

 Navigation

 	
 index

 	EasyAdminBundle latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/easyadminbundle/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/easyadminbundle/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	EasyAdminBundle latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Resources/doc/book/configuration-reference.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Configuration Reference

Simplest Backend Configuration

Useful only for creating backend prototypes in a few seconds:

easy_admin:
 entities:
 - AppBundle\Entity\Customer
 - AppBundle\Entity\Product
 # ...

Full Backend Configuration

This section describes the entire list of configuration options available to
customize your backends.

		easy_admin
		site_name

		formats
		date

		time

		datetime

		number

		disabled_actions

		design
		theme

		color_scheme

		brand_color

		form_theme

		assets
		css

		js

		templates

		list
actions
max_results

		edit
actions

		new
actions

		show
actions
max_results

		entities

easy_admin

This is the root key for the entire backend configuration. All the other options
are defined under this key.

site_name

(default value: 'Easy Admin', type: string)

The name displayed as the title of the administration zone (e.g. your company
name, the project name, etc.) Example:

easy_admin:
 site_name: 'ACME Inc.'
 # ...

This value is displayed in the backend “as is”, so you can include HTML tags and
they will be rendered as HTML content. Example:

easy_admin:
 site_name: 'ACME'
 # ...

formats

This is the parent key of the four options that configure the formats used to
display dates and numbers.

date

(default value: 'Y-m-d', type: string)

The format applied in the list and show views to display the properties of
type date. This format doesn’t affect to time and datetime properties.
The value must be a valid PHP date format according to the syntax options defined
in http://php.net/date. Example:

easy_admin:
 formats:
 date: 'd/m/Y'
 # ...

time

(default value: 'H:i:s', type: string)

The format applied in the list and show views to display the properties of
type time. This format doesn’t affect to date and datetime properties.
The value must be a valid PHP time format according to the syntax options defined
in http://php.net/date. Example:

easy_admin:
 formats:
 time: 'h:i A e'
 # ...

datetime

(default value: 'F j, Y H:i', type: string)

The format applied in the list and show views to display the properties of
type datetime. This format doesn’t affect to date and time properties.
The value must be a valid PHP time format according to the syntax options defined
in http://php.net/date. Example:

easy_admin:
 formats:
 datetime: 'd/m/Y h:i A e'
 # ...

number

(default value: none, type: string)

The format applied in the list and show views to display the numeric
properties. The value must be a format according to the syntax options defined
in http://php.net/sprintf. Example:

easy_admin:
 formats:
 number: '%0.2f'
 # ...

disabled_actions

(default value: empty array, type: array)

The names of the actions disabled for all backend entities. This value can be
overridden in a entity-by-entity basis, so you can disable some actions globally
and then re-enable some of them for some entities. Example:

easy_admin:
 disabled_actions: ['new', 'edit']
 # ...

design

This is the parent key of the options that configure the options related to the
visual design of the backend.

theme

(default value: 'default', type: string)

The name of the theme used to create the backend. The only theme available is
called default. This option is in fact a placeholder for future use. You can
safely ignore it.

color_scheme

(default value: 'dark', type: string, values: 'dark' or 'light')

It defines the colors used in the backend design. If you find the default dark
color scheme too dark, try the light color scheme. Example:

easy_admin:
 design:
 color_scheme: 'light'
 # ...

brand_color

(default value: '#E67E22', type: string, values: any valid CSS
expression to define a color)

This is the color used to highlight important elements of the backend, such as
the site name, links and buttons. Use the main color of your company or project
to create a backend that matches your branding perfectly. Example:

easy_admin:
 design:
 brand_color: '#3B5998'
 # any valid CSS color syntax can be used
 # brand_color: 'rgba(59, 89, 152, 0.5)'
 # ...

form_theme

(default value: 'horizontal', type: string or array of strings,
values: 'horizontal', 'vertical', any valid form theme template path)

The form theme used to render the form fields in the edit and new views.
The default 'horizontal' value is a shortcut of @EasyAdmin/form/bootstrap_3_horizontal_layout.html.twig
which displays the form fields using the default horizontal Bootstrap 3 design.

The 'vertical' value is a shortcut of @EasyAdmin/form/bootstrap_3_layout.html.twig
which displays the form fields using the more common vertical Bootstrap 3 design.
This style is better than 'horizontal' when you want to increase the space
available to edit the property values. Example:

easy_admin:
 design:
 form_theme: 'vertical'
 # ...

Moreover, you can use your own form theme just by defining the path to its
templates. Example:

easy_admin:
 design:
 form_theme: '@App/custom_form_theme.html.twig'
 # ...

You can even use several form themes at the same time. Example:

easy_admin:
 design:
 form_theme: ['@App/custom_form_theme.html.twig', '@Acme/form/global_theme.html.twig']
 # ...

assets

This is the parent key of the css and js keys that allow to include any
number of CSS and JavaScript assets in the backend layout.

css

(default value: empty array, type: array, values: any valid link
to CSS files)

This option defines the custom CSS file (or files) that are included in the
backend layout after loading the default CSS files. It’s useful to link to the
CSS files that customize the design of your backends. The values of this option
are output directly in a <link> HTML element, so you can use relative or
absolute links. Example:

easy_admin:
 design:
 assets:
 css: ['/bundles/app/custom_backend.css', 'https://example.com/css/theme.css']
 # ...

CSS files are included in the same order as defined. This option cannot be used
to remove the default CSS files loaded by EasyAdmin. To do so, you must override
the <head> part of the layout template using a custom template.

js

(default value: empty array, type: array, values: any valid link
to JavaScript files)

This option defines the custom JavaScript file (or files) that are included in
the backend layout after loading the default JavaScript files. It’s useful to
link to the JavaScript files that customize the behavior of your backends. The
values of this option are output directly in a <script> HTML element, so you
can use relative or absolute links. Example:

easy_admin:
 design:
 assets:
 js: ['/bundles/app/custom_widgets.js', 'https://example.com/js/animations.js']
 # ...

JavaScript files are included in the same order as defined. This option cannot
be used to remove the default JavaScript files loaded by EasyAdmin. To do so,
you must override the <head> part of the layout template using a custom template.

templates

(default value: none, type: strings, values: any valid Twig template path)

This option allows to redefine the template used to render each backend element,
from the global layout to the micro-templates used to render each form field type.
For example, to use your own template to display the properties of type boolean
redefine the field_boolean template:

easy_admin:
 design:
 templates:
 field_boolean: '@MyBundle/backend/boolean.html.twig'
 # ...

Similarly, to customize the entire backend layout (used to render all pages)
redefine the layout template:

easy_admin:
 design:
 templates:
 layout: '@MyBundle/backend/base.html.twig'
 # ...

This is the full list of templates that can be redefined:

easy_admin:
 design:
 templates:
 # Used to decorate the main templates (list, edit, new and show)
 layout: '...'
 # Used to render the page where entities are edited
 edit: '...'
 # Used to render the listing page and the search results page
 list: '...'
 # Used to render the page where new entities are created
 new: '...'
 # Used to render the contents stored by a given entity
 show: '...'
 # Used to render the form displayed in the new and edit pages
 form: '...'
 # Used to render the notification area were flash messages are displayed
 flash_messages: '...'
 # Used to render the paginator in the list page
 paginator: '...'
 # Used to render array field types
 field_array: '...'
 # Used to render fields that store Doctrine associations
 field_association: '...'
 # Used to render bigint field types
 field_bigint: '...'
 # Used to render boolean field types
 field_boolean: '...'
 # Used to render date field types
 field_date: '...'
 # Used to render datetime field types
 field_datetime: '...'
 # Used to render datetimetz field types
 field_datetimetz: '...'
 # Used to render decimal field types
 field_decimal: '...'
 # Used to render float field types
 field_float: '...'
 # Used to render the field called "id". This avoids formatting its
 # value as any other regular number (with decimals and thousand separators)
 field_id: '...'
 # Used to render image field types (a special type that displays the image contents)
 field_image: '...'
 # Used to render integer field types
 field_integer: '...'
 # Used to render unescaped values
 field_raw: '...'
 # Used to render simple array field types
 field_simple_array: '...'
 # Used to render smallint field types
 field_smallint: '...'
 # Used to render string field types
 field_string: '...'
 # Used to render text field types
 field_text: '...'
 # Used to render time field types
 field_time: '...'
 # Used to render toggle field types (a special type that display
 # booleans as flip switches)
 field_toggle: '...'
 # Used when the field to render is an empty collection
 label_empty: '...'
 # Used when is not possible to access the value of the field
 # to render (there is no getter or public property)
 label_inaccessible: '...'
 # Used when the value of the field to render is null
 label_null: '...'
 # Used when any kind of error or exception happens when trying to
 # access the value of the field to render
 label_undefined: '...'
 # ...

The label_* and field_* templates are only applied in the list and show
templates. In order to customize the fields of the forms displayed in the new
and edit views, use the easy_admin.design.form_theme option.

list

Defines the options applied globally for the list view of all entities.

title

(type: string)

The default title for all entities (it can be overridden individually by each
entity).

easy_admin:
 list:
 title: 'list.%%entity_label%%'

actions

(default value: empty array, type: array)

Defines the actions available in the list view, which can be built-in actions
(edit, list, new, search, show) or custom actions.

easy_admin:
 list:
 actions: ['new', 'show', 'myAction', 'myOtherAction']

The actions defined in this option are added to the default ones for each view.
To remove an action, add it to this list prepending its name with a dash (-):

easy_admin:
 list:
 actions: ['-new', '-show', 'myAction', 'myOtherAction']

max_results

(default value: 15, type: integer)

The maximum number of rows displayed in the list view and in the search result
page.

edit

Defines the options applied globally for the edit view of all entities. The
available options are actions and title, which behave in the same way as
explained above for the list view.

new

Defines the options applied globally for the new view of all entities. The
available options are actions and title, which behave in the same way as
explained above for the list view.

show

Defines the options applied globally for the show view of all entities.

title

(type: string)

The default title for all entities (it can be overridden individually by each
entity).

easy_admin:
 show:
 title: 'show.%%entity_label%%'

actions

(default value: empty array, type: array)

It works as explained above for the list view.

max_results

(default value: 10, type: integer)

If some entity property defines a relation with another entity, in the show
view this property is displayed as a list of links to the related items. For
example, if your User and Article entities are related, when displaying the
details of any user you’ll also see a list of links to their articles.

This option defines the maximum number of items displayed for those relations,
preventing issues when relations contains lots of elements. This option is also
used as the maximum number of suggestions displayed for autocomplete fields.

entities

(default value: empty array, type: array)

Defines the list of entities managed by the bundle.

Deprecated Configuration Options

EasyAdmin handles deprecated options transparently, so your backend will keep
working even if your configuration is outdated. However, it’s a good practice to
not use these deprecated options:

list_actions

DEPRECATED
easy_admin:
 list_actions: ['new', 'edit']
 # ...

USE THIS INSTEAD
easy_admin:
 list:
 actions: ['new', 'edit']
 # ...

list_max_results

DEPRECATED
easy_admin:
 list_max_results: 20
 # ...

USE THIS INSTEAD
easy_admin:
 list:
 max_results: 20
 # ...

assets.css

DEPRECATED
easy_admin:
 assets:
 css: ['/bundles/app/custom_backend.css']
 # ...

USE THIS INSTEAD
easy_admin:
 design:
 assets:
 css: ['/bundles/app/custom_backend.css']
 # ...

assets.js

DEPRECATED
easy_admin:
 assets:
 js: ['/bundles/app/custom_widgets.js']
 # ...

USE THIS INSTEAD
easy_admin:
 design:
 assets:
 js: ['/bundles/app/custom_widgets.js']
 # ...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/book/8-about.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 8. About this Project

The main author of this bundle works for SensioLabs, the company behind the
Symfony framework. However, this bundle is not promoted, endorsed or sponsored
by SensioLabs in any way. This is not the official Symfony admin generator.

Our philosophy

EasyAdmin is an open source project with a very opinionated development. We
don’t make decisions by committee and we’re not afraid to refuse the feature
requests proposed by our users. We prefer to focus on as few features as
possible to keep the original vision of the project.

These are some of our development principles:

		Developers and end users are our priorities. We’ll always prioritize
UX (user experience) and DX (developer experience) over code purity.

		Backend customization is balanced between configuration files and PHP code.
We’ll add new options when they are easy and make sense. Otherwise, we’ll
provide code extension points.

		Features will only be added if they are useful for a majority of users and
they don’t overcomplicate the application code.

		Documentation is more important than code. Everything must be documented
and documentation must be always up-to-date.

How to Collaborate in this Project

Read the Contributing Guide

Alternative Projects

EasyAdmin deliberately discards the most complex and customized backends,
focusing on the simplest 80% of the backend projects. In case you encounter an
unavoidable limitation to develop your backend with EasyAdmin, consider using
any of the following alternative admin generators:

		GeneratorBundle [https://github.com/symfony2admingenerator/GeneratorBundle],
a project similar to EasyAdmin and based on YAML configuration files. It
provides support for Propel, Doctrine ORM and Doctrine ODM models.

		SonataAdminBundle [https://github.com/sonata-project/SonataAdminBundle],
the most advanced and most customizable admin generator for Symfony
applications. There’s nothing you can’t do with Sonata.

		NgAdminGeneratorBundle [https://github.com/marmelab/NgAdminGeneratorBundle],
an AngularJS-based admin generator compatible with any Symfony project
that provides a RESTFul API.

←

 Chapter 7. Creating Complex and Dynamic Backends

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/book/2-design-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 2. Design Configuration

The design of the backend is based on the popular AdminLTE template [https://github.com/almasaeed2010/AdminLTE] and it
also uses Bootstrap 3 [https://github.com/twbs/bootstrap], jQuery [https://github.com/jquery/jquery] and Font Awesome icons [https://github.com/FortAwesome/Font-Awesome]. You can
customize this design in two ways:

		For simple backends, you can change the value of some YAML configuration
options, as explained in this chapter.

		For more complex backends, you can override every template and fragment
used to render the backend pages, as explained in the following chapters.

All the configuration options explained in this chapter are defined under the
global design YAML key:

easy_admin:
 design:
 # ... design configuration options

Changing the Main Backend Color

Define the brand_color option to change the default blue color used by the
backend interface:

easy_admin:
 design:
 brand_color: '#1ABC9C'
 # ...

[image: Using a custom brand color in the backend]

The value of the brand_color option can be any of the valid CSS color formats:

easy_admin:
 design:
 brand_color: 'red'
 brand_color: 'rgba(26, 188, 156, 0.85)'
 brand_color: 'hsl(0, 100%, 50%);'
 # ...

Changing the Color Scheme

By default, backend interface uses a dark color scheme, which is the most common
choice for admin applications. If you prefer a lighter alternative, add the
color_scheme option with the light value:

easy_admin:
 design:
 # 'dark' is the default value
 color_scheme: 'light'
 # ...

[image: The default backend homepage using the light color scheme]

Adding Custom Web Assets

Complex backends may require to load your own CSS and JavaScript files. Add the
assets option to define the paths of the web assets to load in the backend
pages. All kinds of assets are supported and linked accordingly:

easy_admin:
 design:
 assets:
 css:
 # HTTP protocol-relative URL
 - '//example.org/css/admin1.css'
 # absolute non-secure URL
 - 'http://example.org/css/admin2.css'
 # absolute secure URL
 - 'https://example.org/css/admin3.css'
 # absolute internal bundle URL
 - '/bundles/user/css/admin4.css'
 # relative internal bundle URL
 - 'bundles/app/css/admin5.css'
 js:
 # this option works exactly the same as the 'css' option
 - '//example.org/js/admin1.js'
 - 'http://example.org/js/admin2.js'
 - 'https://example.org/js/admin3.js'
 - '/bundles/user/js/admin4.js'
 - 'bundles/app/js/admin5.js'
 # ...

CSS Selectors

The <body> element of every backend page includes different id and class
attributes to help you target your own styles. The id follows this pattern:

| View | <body> ID attribute
| —— | ——————————————————————–
| edit | easyadmin-edit-<entity_name>-<entity_id>
| list | easyadmin-list-<entity_name>
| new | easyadmin-new-<entity_name>
| show | easyadmin-show-<entity_name>-<entity_id>

If you are editing for example the element with id = 200 of the User entity,
the <body> of that page will be <body id="easyadmin-edit-User-200" ...>.

The pattern of the class attribute is different because it applies several
CSS classes at the same time:

| View | <body> CSS class
| —— | ——————————————————————–
| edit | easyadmin edit edit-<entity_name>
| list | easyadmin list list-<entity_name>
| new | easyadmin new new-<entity_name>
| show | easyadmin show show-<entity_name>

If you are displaying for example the listing of User entity elements, the
<body> of that page will be <body class="easyadmin list list-User" ...>.

Changing the favicon

A nice trick for backends is to change their favicon to better differentiate
the backend from the public website (this is specially useful when opening lots
of tabs in your browser).

If you want to apply this technique, create the favicon image (using any common
format: .ico, .png, .gif, .jpg) and set the favicon option:

easy_admin:
 design:
 assets:
 favicon: '/assets/backend/favicon.png'
 # ...

The value of the favicon option is used as the value of the href attribute
of the <link rel="icon" ...> element in the backend’s layout.

If your favicon uses an uncommon graphic format, you must define both the path
of the favicon and its mime_type:

easy_admin:
 design:
 assets:
 favicon:
 path: '/assets/backend/favicon.xxx'
 mime_type: 'image/xxx'
 # ...

←

 Chapter 1. Basic Configuration | Chapter 3. List, Search and Show Views Configuration →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/book/3-list-search-show-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 3. List, Search and Show Views Configuration

This chapter explains how to customize the read-only views: list, search and
show. You’ll learn all their configuration options and how to override or
tweak their templates.

List, Search and Show Views

The List View displays the items that match the given criteria and provides
automatic pagination and column sorting:

[image: List view interface]

The Search View displays the results of any query performed by the user.
It reuses most of the design and features of the list view to ensure a
consistent user experience:

[image: Search view interface]

The Show View displays the contents of a given entity:

[image: Show view interface]

General Configuration

In order to make examples more concise, this section only shows the
configuration for the list view, but you can apply the exact same options to
the other search and show views.

Customize the Title of the Page

This option refers both to the value of the <title> element and to the visible
title displayed at the top of the page. By default the title is just the name of
the entity. Define the title option to set a custom page title:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 label: 'Customers'
 list:
 title: "Most recent customers"
 # ...

The title value can include the following special variables:

		%entity_label%, resolves to the value defined in the label option of
the entity. If you haven’t defined it, this value will be equal to the
entity name. In the example above, this value would be Customers.

		%entity_name%, resolves to the entity name, which is the YAML key used
to configure the entity in the backend configuration file. In the example
above, this value would be Customer.

		%entity_id%, it’s only available for the show view and it resolves to
the value of the primary key of the entity being showed. Even if the option
is called entity_id, it also works for primary keys with names different
from id.

CAUTION

In Symfony applications, YAML values enclosed with % and % have a special
meaning (they are considered container parameters). Escape these values
doubling the % characters:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 label: 'Customers'
 list:
 title: '%%entity_label%% listing'
 # ...

If several entities use the same custom title, you can define the default title
for all entities in the global list.title and show.title options (these
global titles are always overridden by the title defined by each entity):

app/config/config.yml
easy_admin:
 list:
 title: 'list.%%entity_label%%'
 show:
 title: '%%entity_label%% (#%%entity_id%%)'

Customize the Number of Rows Displayed

By default, listings in the list and search display a maximum of 15 rows.
Define the max_results option under the global list key to change this value:

app/config/config.yml
easy_admin:
 list:
 max_results: 30
 # ...

In addition, the show view displays a maximum of 10 items for fields related
with other entities (e.g. if Category and Product entities are related, it
displays a maximum of 10 products when browsing the details of some category).
Define the max_results option under the global show key to change this value:

app/config/config.yml
easy_admin:
 show:
 max_results: 20
 # ...

Customize the Properties Displayed

By default, the show view displays all the entity properties and the list
and search views make some “smart guesses” to decide which columns to display
to make listings look good.

Use the fields option to explicitly set the properties to display:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields: ['id', 'firstName', 'lastName', 'phone', 'email']
 # ...

This option is also useful to reorder the properties, because by default they
are displayed in the same order as defined in the related Doctrine entity.

In the case of the search view, this fields option defines the properties
included in the search query. Otherwise, the query is performed on all entity
properties except those with special data types, such as binary, blob,
object, etc.

Customize the Properties Appearance

When entity properties are not configured explicitly, the backend displays them
with the most appropriate appearance according to their data types. If you
prefer to control their appearance, start by using the extended field configuration:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields: ['id', 'name', { property: 'email', label: 'Contact' }]
 # ...

Instead of using a string to define the property (e.g. 'email') you have to
define a hash with the name of the property ({ property: 'email' }) and the
options you want to define for it ({ ..., label: 'Contact' }).

If your entity contains lots of properties, consider using the alternative YAML
sequence syntax to improve the legibility of your backend configuration. The
following example is equivalent to the above example:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields:
 - id
 - name
 - { property: 'email', label: 'Contact' }
 # ...

These are the options that you can define for each field:

		property (mandatory): the name of the property to be displayed. This is
the only mandatory option when using the extended field configuration format.

		label (optional): the title displayed for the field (as the column name in
the list and search views and as the <label> element in the show view).
The default title is the “humanized” version of the property name (e.g.
published is displayed as Published and dateOfBirth as Date of birth).

		css_class (optional): the CSS class applied to the parent HTML element that
encloses the field contents. In the list and search views, this class
is also applied to the <th> header of the column associated with this field.

		template (optional): the name of the custom template used to render the
contents of the field. This option is fully explained later in this chapter.

		type (optional): the type of data stored in the property, which affects
how the contents are displayed. The allowed values are:
		Any of the Doctrine types: array, association, bigint, blob,
boolean, date, datetime, datetimetz, decimal, float, guid,
integer, json_array, object, simple_array, smallint, string,
text, time.

		Any of the custom EasyAdmin types: email, image, raw, tel,
toggle, url (they are explained later in this chapter).

The fields of the list and search views define another option:

		sortable (optional): if true the backend allows to sort results by this
property; set it to false to disable sorting. All properties are sortable
by default except virtual properties (explained later in this chapter) and
those related with Doctrine associations of any type.

The fields of the show view define another option:

		help (optional): the help message displayed below the field contents.

TIP

In addition to these options defined by EasyAdmin, you can define any custom
option for the fields. This way you can create very powerful backend
customizations, as explained in the
How to Define Custom Options for Entity Properties tutorial.

Formatting Dates and Numbers

Customizing Date and Time Properties

By default, these are the formats applied to date and time properties (read the
date configuration options [http://php.net/manual/en/function.date.php] in the PHP manual if you don’t understand the
meaning of these formats):

		date: Y-m-d

		time: H:i:s

		datetime: F j, Y H:i

These default formats can be overridden in two ways: globally for all entities
and locally for each entity property. The global formats option sets the
formats for all entities and their properties:

easy_admin:
 formats:
 date: 'd/m/Y'
 time: 'H:i'
 datetime: 'd/m/Y H:i:s'
 entities:
 # ...

The values of the date, time and datetime options are passed to the
format() method of the DateTime class, so you can use any of the
date configuration options [http://php.net/manual/en/function.date.php] defined by PHP.

Date/time formatting can also be defined in each property configuration using
the format option. This local option always overrides the global format:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields:
 - { property: 'dateOfBirth', format: 'j/n/Y' }
 # ...
 # ...

Customizing Numeric Properties

Numeric properties (bigint, integer, smallint, decimal, float) are
formatted by default according to the locale of your Symfony application. This
formatting can be overridden globally for all entities or locally for each
property.

The global formats option applies the same formatting for all entities:

easy_admin:
 formats:
 # ...
 number: '%.2f'
 entities:
 # ...

In this case, the value of the number option is passed to the sprintf()
function, so you can use any of the PHP format specifiers [http://php.net/manual/en/function.sprintf.php].

Numeric properties can also define their formatting using the format
option. This local option always overrides the global format:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 - { property: 'serialNumber', format: '%010s' }
 - { property: 'margin', format: '%01.2f' }
 # ...
 # ...

Virtual Properties

Sometimes, it’s useful to display values which are not entity properties. For
example, if your Customer entity defines the firstName and lastName
properties, you may want to display a column called Name with both values
merged. These are called virtual properties because they don’t really exist as
Doctrine entity properties.

First add the virtual property to the entity configuration as any other property:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 # 'name' doesn't exist as a Doctrine entity property
 fields: ['id', 'name', 'phone', 'email']
 # ...

Now, if you reload the backend, you’ll see that the virtual property only
displays Inaccessible as its value. The reason is that name does not match
any of the entity’s properties. To fix this issue, add a new public method in
your entity called getXxx() or xxx(), where xxx is the name of the
virtual property (in this case the property is called name, so the method
must be called getName() or name()):

use Doctrine\ORM\Mapping as ORM;

/** @ORM\Entity */
class Customer
{
 // ...

 public function getName()
 {
 return $this->getFirstName().' '.$this->getLastName();
 }
}

That’s it. Reload your backend and now you’ll see the value of this virtual
property. By default, virtual properties are displayed as text contents. If your
virtual property is a boolean value or a date, use the type option to set a
more appropriate data type:

in this example, the virtual properties 'is_eligible' and 'last_contact' define
their 'type' option to avoid displaying them as regular text contents
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields:
 - 'id'
 - { property: 'is_eligible', type: 'boolean' }
 - { property: 'last_contact', type: 'datetime' }
 # ...

The main limitation of virtual properties is that you cannot sort listings
using these fields.

Sorting Entity Listings

By default the list and search views sort the rows in descending order
according to the value of the primary key. You can sort by any other entity
property using the sort configuration option:

app/config/config.yml
easy_admin:
 entities:
 Product:
 # ...
 list:
 # if the sort order is not specified, 'DESC' is used
 sort: 'updatedAt'
 search:
 # use an array to also define the sorting direction
 sort: ['updatedAt', 'ASC']

The sort option of each entity is only used as the default content sorting. If
the query string includes the optional sortField and sortDirection
parameters, their values override this sort option. This happens for example
when defining a different sorting in a custom menu and when clicking on the
listings columns to reorder the displayed contents.

Filtering Entities

A common need for backends is to filter the entities included in listings (for
example: don’t display expired offers, display only clients that spend more than
a given amount, etc.) You can achieve this with the features explained later in
this chapter to modify the behavior of the list, search and show views.

However, for simple filters it’s more convenient to use the dql_filter option,
which defines the conditions passed to the WHERE clause of the Doctrine query
used to get the entities displayed in the list and search views.

The following example manages the same User entity in two different ways using
a basic filter to differentiate each type of user:

easy_admin:
 entities:
 VipCustomers:
 class: AppBundle\Entity\User
 list:
 dql_filter: 'entity.budget > 100000'
 RegularCustomers:
 class: AppBundle\Entity\User
 list:
 dql_filter: 'entity.budget <= 100000'

The Doctrine DQL expression defined in the dql_filter option must always use
entity as the name of the entity, regardless of your actual entity name.

Since this is a regular YAML configuration file, you can also include container
parameters inside the filter to use different values depending on the environment
or even dynamic values:

easy_admin:
 entities:
 VipCustomers:
 class: AppBundle\Entity\User
 list:
 dql_filter: 'entity.budget > %customers.budget_threshold%'
 # ...

The value of the dql_filter can combine several conditions (in fact, you can
put anything that is considered valid as a WHERE clause in a Doctrine query):

easy_admin:
 entities:
 UrgentIssues:
 class: AppBundle\Entity\Issue
 list:
 dql_filter: 'entity.label == "CRITICAL" OR entity.priority > 4'
 ImportantIssues:
 class: AppBundle\Entity\Issue
 list:
 dql_filter: 'entity.priority > 2 AND entity.numComments > 10'
 AllIssues:
 class: AppBundle\Entity\Issue

NOTE

By default the dql_filter option from the list view is also used in the
search view. If you prefer to apply different filters, define the
dql_filter option explicitly for the search view:

easy_admin:
 entities:
 Issues:
 class: AppBundle\Entity\Issue
 list:
 dql_filter: "LOWER(entity.title) LIKE '%%issue%%'"
 search:
 # defining a different condition than 'list'
 dql_filter: 'entity.status != "DELETED"'
 # using an empty value to not apply any condition when searching
 # elements (this prevents inheriting the 'dql_filter' value defined in 'list')
 dql_filter: ''

TIP

Combine the dql_filter option with a custom menu (as explained in the next
chapters) to improve the navigation of the backend.

Property Types Defined by EasyAdmin

In addition to the Doctrine data types, properties can use any of the following
data types defined by EasyAdmin.

Email Data Type

It displays the contents of the property as a clickable mailto: link:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\User
 list:
 fields:
 - { property: 'contact', type: 'email' }
 # ...
 # ...

URL Data Type

It displays the contents of the property as a clickable link which opens in a
new browser tab:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\User
 list:
 fields:
 - { property: 'blogUrl', type: 'url' }
 # ...
 # ...

Telephone Data Type

It displays the contents of the property as a clickable telephone number. Beware
that some browsers don’t support these links:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\User
 list:
 fields:
 - { property: 'workPhoneNumber', type: 'tel' }
 # ...
 # ...

Toogle and Boolean Data Types

If an entity is editable, the list view applies the type: 'toggle' option to
all its boolean properties. This data type makes these properties be rendered as
“flip switches” that allow to toggle their values very easily:

[image: Advanced boolean fields]

When you change the value of any boolean property, an Ajax request is made to
actually change that value in the database. If something goes wrong, the switch
automatically returns to its original value and it disables itself until the
page is refreshed to avoid further issues:

[image: Boolean field behavior when an error happens]

In you prefer to disable these “toggles”, define the type of the property
explicitly as boolean:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 - { property: 'hasStock', type: 'boolean' }
 # ...
 # ...

Now the boolean value is rendered as a simple label and its value cannot be
modified from the list view:

[image: Boolean field displayed as a label]

Image Data Type

If any of your properties stores the URL or path of an image, this type allows
you to display the actual image instead of its path. In most cases, you just
need to set the type property to image:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 - { property: 'photo', type: 'image' }
 # ...
 # ...

In the above example, the photo property is displayed as a HTML
element whose src attribute is the value stored in the property.

If the property stores relative paths, define the base_path option to set the
path to be prefixed to the image path:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 - { property: 'photo', type: 'image', base_path: '/img/' }
 # ...
 # ...

The value of the base_path can be a relative or absolute URL and even a
Symfony parameter:

relative path
- { property: 'photo', type: 'image', base_path: '/img/products/' }

absolute path pointing to an external host
- { property: 'photo', type: 'image', base_path: 'http://static.acme.org/img/' }

Symfony container parameter
- { property: 'photo', type: 'image', base_path: '%vich_uploader.mappings.product_image%' }

The image base path can also be set in the entity, to avoid repeating its
value for different properties or different views:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 image_base_path: 'http://static.acme.org/img/'
 list:
 fields:
 - { property: 'photo', type: 'image' }
 # ...
 # ...

The base paths defined for a property always have priority over the one defined
globally for the entity.

Raw Data Type

All the string-based data types are escaped before displaying them. For that
reason, if the property stores HTML content, you’ll see the HTML tags instead of
the rendered HTML content. In case you want to display the contents unescaped,
define the type option with a raw value:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 - { property: 'features', type: 'raw' }
 # ...
 # ...

Advanced Design Configuration

This section explains how to completely customize the design of the list,
search and show views overriding the default templates and fragments used to
render them.

Default Templates

EasyAdmin defines seven Twig templates to create its interface. These are the
four templates related to list, search and show views:

		layout, the common layout that decorates the rest of the main templates;

		show, renders the contents stored by a given entity;

		list, renders the entity listings and the search results page;

		paginator, renders the paginator of the list view.

Depending on your needs you can override these templates in different ways:

		Override the templates via configuration, when you want to decide where
to store the custom templates;

		Override the templates via convention, which is faster to set up because
you store the custom templates in a specific directory defined by EasyAdmin.

Selecting the Template to Render

Before selecting a template to render some contents, EasyAdmin looks for these
configuration options and directory locations to check if your backend has
overridden it (the first template which exists is used):

		easy_admin.entities.<EntityName>.templates.<TemplateName> configuration
option.

		easy_admin.design.templates.<TemplateName> configuration option.

		app/Resources/views/easy_admin/<EntityName>/<TemplateName>.html.twig

		app/Resources/views/easy_admin/<TemplateName>.html.twig

		@EasyAdmin/default/<TemplateName>.html.twig

The last one is the path of the built-in templates and they are always available.
The following sections explain the first four ways to customize the templates
used by the backend.

TIP

Regardless of how you override the default templates, it’s convenient to check
first the variables provided by the backend to those templates. The easiest
way to do this is to include an empty {{ dump() }} call in your templates.

Overriding the Default Templates By Configuration

If you prefer to decide where to store your custom templates, use the templates
option globally or for some specific entities.

For example, to override the paginator template just for the Customer entity,
create the paginator.html.twig template somewhere in your application and then,
configure its location with the templates option:

easy_admin:
 entities:
 Customer:
 # ...
 templates:
 # Twig namespace template syntax
 paginator: '@App/Default/fragments/_paginator.html.twig'
 # legacy template syntax works too:
 # paginator: 'AppBundle:Default:fragments/_paginator.html.twig'

Similarly, to override some template for all entities, define the templates
option under the global design option:

easy_admin:
 design:
 templates:
 # Twig namespace template syntax
 paginator: '@App/Default/fragments/_paginator.html.twig'
 # legacy template syntax works too:
 paginator: 'AppBundle:Default:fragments/_paginator.html.twig'
 entities:
 # ...

Overriding the Default Templates By Convention

If you don’t mind the location of your custom templates, consider creating them
in the app/Resources/views/easy_admin/ directory. When the templates option
is not defined, EasyAdmin looks into this directory before falling back to the
default templates.

For example, to override the paginator template just for the Customer entity,
you only need to create this template in this exact location (there is no need
to define the templates configuration option):

your-project/
├─ app/
│ ├─ ...
│ └─ Resources/
│ └─ views/
│ └─ easy_admin/
│ └─ Customer/
│ └─ paginator.html.twig
├─ src/
├─ vendor/
└─ web/

In case you want to override the template for all entities, define the new
template right under the easy_admin/ directory:

your-project/
├─ app/
│ ├─ ...
│ └─ Resources/
│ └─ views/
│ └─ easy_admin/
│ └─ paginator.html.twig
├─ src/
├─ vendor/
└─ web/

Tweaking the Design of the Default Templates

Most often than not, customizing the design of the backend is a matter of just
tweaking some element of the default templates instead of overriding them
completely. The easiest way to do that is to create a new template that extends
from the default one and override just the specific Twig block you want to
customize.

Suppose you want to change the search form of the list view. First, create a
new list.html.twig template as explained in the previous sections. Then, make
your template extend from the default list.html.twig template:

{% extends '@EasyAdmin/default/list.html.twig' %}

{# ... #}

Lastly, override the search_action block to just change that template fragment:

{% extends '@EasyAdmin/default/list.html.twig' %}

{% block search_action %}
 {# ... #}
{% endblock %}

Customizing the Template Used to Render Each Property Type

In the list, search and show views, the value of each property is rendered
with a different template according to its type. For example, properties of type
string are rendered with the field_string.html.twig template.

These are all the available templates for each property type:

		field_array.html.twig

		field_association.html.twig, renders the properties defined as Doctrine
associations. These relations are by default displayed as links pointing to
the show action of the related entity. If you prefer to not display those
links, disable the show action for the related entities with the
disabled_actions option.

		field_bigint.html.twig

		field_boolean.html.twig

		field_date.html.twig

		field_datetime.html.twig

		field_datetimetz.html.twig

		field_decimal.html.twig

		field_email.html.twig, related to the special email data type defined by
EasyAdmin.

		field_float.html.twig

		field_id.html.twig, special template to render any property called id.
This avoids formatting the value of the primary key as a numeric value, with
decimals and thousand separators.

		field_image.html.twig, related to the special image data type defined by
EasyAdmin.

		field_integer.html.twig

		field_raw.html.twig, related to the special raw data type defined by
EasyAdmin.

		field_simple_array.html.twig

		field_smallint.html.twig

		field_string.html.twig

		field_tel.html.twig, related to the special tel data type defined by
EasyAdmin.

		field_text.html.twig

		field_time.html.twig

		field_toggle.html.twig, related to the special toggle data type defined
by EasyAdmin for boolean properties.

		field_url.html.twig, related to the special url data type defined by
EasyAdmin.

In addition, there are other templates defined to render special labels:

		label_empty.html.twig, used when the property to render is empty (it’s
used for arrays, collections, associations, images, etc.)

		label_inaccessible.html.twig, used when is not possible to access the
value of the property because there is no getter or public property.

		label_null.html.twig, used when the value of the property is null.

		label_undefined.html.twig, used when any kind of error or exception
happens when trying to access the value of the property.

The same template overriding mechanism explained in the previous sections can be
applied to customize the templates used to render each property. Therefore, you
can override these templates globally or for each entity and you can do that
defining the template configuration option or storing the templates in the
app/Resources/views/easy_admin/ directory.

Before customizing these templates, it’s recommended to check out the default
field_*.html.twig and label_*.html.twig templates to learn about their
features. Inside these templates you have access to the following variables:

		field_options, an array with the options configured for this field in the
backend configuration file.

		item, an object with the current entity instance.

		value, the content of the property being rendered, which can be a variable
of any type (string, numeric, boolean, array, etc.)

		view, a string with the name of the view where the field is being rendered
(show or list);

		entity_config, an array with the full configuration of the currently
selected entity;

		backend_config, an array with the full backend configuration.

Rendering Entity Properties with Custom Templates

The templates property explained in the previous section is an “all or nothing”
option. If you override for example the field_integer.html.twig template, the
changes are applied to all the properties of type integer for that entity or
the entire backend.

However, when your backend is very complex, it may be useful to use a custom
template just to render a single property of some entity. To do so, define the
path of the custom template in the template option of the property:

easy_admin:
 # ...
 entities:
 Invoice:
 list:
 fields:
 - { property: 'total', template: 'invoice_total.html.twig' }

The value of the total property is now rendered with invoice_total.html.twig
template instead of the default field_float.html.twig template. As usual,
EasyAdmin first looks for custom templates in the following locations (the first
existing template is used):

		app/Resources/views/easy_admin/<EntityName>/<TemplateOptionValue>

		app/Resources/views/easy_admin/<TemplateOptionValue>

If none of these templates exist, the value of the template option is
considered a Symfony template path, so you can use any of the valid template
syntaxes:

easy_admin:
 # ...
 entities:
 Invoice:
 list:
 fields:
 - { property: 'total', template: 'AppBundle:Invoice:total.html.twig' }
 - { property: 'price', template: '@App/Invoice/unit_price.html.twig' }

Custom templates receive the same parameters as built-in templates
(field_options, item, value and view).

←

 Chapter 2. Design Configuration | Chapter 4. Edit and New Views Configuration →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-boolean-field-toggle.gif
n Enabled

100

Resources/doc/book/7-complex-dynamic-backends.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 7. Creating Complex and Dynamic Backends

In the previous chapters you’ve learned how to configure your backend using YAML
configuration options and overriding Twig templates. This mechanism is enough
for simple and medium-sized backends.

However, for more complex and dynamic backends you need to use the PHP-based
customization mechanism provided by EasyAdmin. Depending on your needs you can
choose any of these three customization options (or combine them, if your
backend is very complex):

		Override the default AdminController, which is easy to set up and best
suited for simple backends.

		Define a different controller for some or all entities, which is also
easy to set up and scales well for medium-sized backends.

		Define event listeners or subscribers that listen to the events
triggered by EasyAdmin. This is harder to set up but allows you to define
the customization code anywhere in your application.

Customization Based on Overriding the Default AdminController

This technique requires you to create a new controller in your Symfony
application and make it extend from the default AdminController provided by
EasyAdmin. Then you just add some methods in your controller to override the
default ones.

Step 1. Create a new controller class anywhere in your Symfony application
and make it extend from the default AdminController class:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 // ...
}

Step 2. Open the app/config/routing.yml file and change the resource
option of the easy_admin_bundle route to point to your new controller:

app/config/routing.yml
easy_admin_bundle:
 # this is just an example; update the value of 'resource' accordingly
 resource: "@AppBundle/Controller/AdminController.php"
 type: annotation
 prefix: /admin

Save the changes and the backend will start using your own controller.

Step 3. You can now override in your own controller any of the methods
executed in the default AdminController. The next sections explain all the
available methods and show some practical examples.

AdminController Properties and Methods

First, the default AdminController extends from the base Symfony controller [http://symfony.com/doc/current/book/controller.html#the-base-controller-class],
so you have access to all its shortcuts and utility methods:

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
// ...

class AdminController extends Controller
{
 // ...
}

In addition, the default AdminController defines some properties which are
commonly used in the rest of the methods:

class AdminController extends Controller
{
 /** @var array The full configuration of the entire backend */
 protected $config;
 /** @var array The full configuration of the current entity */
 protected $entity;
 /** @var Request The instance of the current Symfony request */
 protected $request;
 /** @var EntityManager The Doctrine entity manager for the current entity */
 protected $em;
}

Finally, the default AdminController defines lots of methods which you
can override in your own backends.

The indexAction() method is the only “real controller” because it’s the only
method associated with a route (all the pages created with EasyAdmin use a
single route called easyadmin). It makes some checks and then it redirects to
the actual executed method, such as listAction(), showAction(), etc.:

class AdminController extends Controller
{
 /** @Route("/", name="easyadmin") */
 public function indexAction(Request $request)
 {
 // you can override this method to perform additional checks and to
 // perform more complex logic before redirecting to the other methods
 }
}

The initialize() method is called by indexAction() and it initializes the
values of the $config, $entity, $request and $em properties shown above:

class AdminController extends Controller
{
 // override this method to initialize your custom properties
 protected function initialize(Request $request);
}

Then, the AdminController defines a method to handle each view. These methods
are complex because they need to perform lots of checks:

class AdminController extends Controller
{
 protected function listAction();
 protected function showAction();
 protected function editAction();
 protected function newAction();
 protected function searchAction();
 protected function deleteAction();
 // special Ajax-based action used to get the results for the autocomplete form field
 protected function autocompleteAction();
}

The rest of the available methods are specific for each action:

List action:

class AdminController extends Controller
{
 // Creates the Doctrine query builder used to get all the items. Override it
 // to filter the elements displayed in the listing
 protected function createListQueryBuilder($entityClass, $sortDirection, $sortField = null);

 // Performs the actual database query to get all the items (using the query
 // builder created with the previous method). You can override this method
 // to filter the results before sending them to the template
 protected function findAll($entityClass, $page = 1, $maxPerPage = 15, $sortField = null, $sortDirection = null);
}

Search action:

class AdminController extends Controller
{
 // Creates the Doctrine query builder used to look for items according to the
 // user's query. Override it to filter the elements displayed in the search listing
 protected function createSearchQueryBuilder($entityClass, $searchQuery, array $searchableFields, $sortField = null, $sortDirection = null);

 // Performs the actual database query to look for the items according to the
 // user's query (using the query builder created with the previous method).
 // You can override this method to filter the results before sending them to
 // the template
 protected function findBy($entityClass, $searchQuery, array $searchableFields, $page = 1, $maxPerPage = 15, $sortField = null, $sortDirection = null);
}

Delete action:

class AdminController extends Controller
{
 // Creates the form used to delete an entity item (a form is required because
 // items are deleted using the 'DELETE' HTTP method)
 protected function createDeleteForm($entityName, $entityId);

 // It's executed just before removing the item with Doctrine and it allows
 // to modify the item being deleted before removing it
 protected function preRemoveEntity($entity);
}

Edit action:

class AdminController extends Controller
{
 // Creates the form used to edit an entity item
 protected function createEditForm($entity, array $entityProperties);

 // It's executed just before saving the changes of a modified entity. It
 // allows you to modify the entity even further before it's saved
 protected function preUpdateEntity($entity)
}

New action:

class AdminController extends Controller
{
 // Creates a new instance of the entity being created. This instance is passed
 // to the form created with the 'createNewForm()' method. Override this method
 // if your entity has a constructor that expects some arguments to be passed
 protected function createNewEntity()

 // Creates the form used to create a new entity item
 protected function createNewForm($entity, array $entityProperties)

 // It's executed just before saving the item for the first time. It allows
 // you to modify the entity before it's saved
 protected function prePersistEntity($entity)
}

Edit and New actions:

These methods are useful to make the same customizations for the edit and
new actions at the same time:

class AdminController extends Controller
{
 // Creates the form builder used to create the form rendered in the
 // create and edit actions
 protected function createEntityFormBuilder($entity, $view);

 // Returns the list of form options used by 'createEntityFormBuilder()'
 protected function getEntityFormOptions($entity, $view);

 // Creates the form object passed to the 'edit' and 'new' templates (using the
 // form builder created by 'createEntityFormBuilder()')
 protected function createEntityForm($entity, array $entityProperties, $view);
}

Overriding the Default AdminController in Practice

Update Some Properties for All Entities

Imagine that some or all of your entities define a property called updatedAt.
Instead of editing this value using the backend interface or relying on Doctrine
extensions, you can make use of the preUpdateEntity() method, which is called
just before saving the changes made on an existing entity:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 // ...

 public function preUpdateEntity($entity)
 {
 if (method_exists($entity, 'setUpdatedAt')) {
 $entity->setUpdatedAt(new \DateTime());
 }
 }
}

This other example shows how to automatically set the slug of the entities when
creating (prePersistEntity()) or editing (preUpdateEntity()) them:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 // ...

 public function prePersistEntity($entity)
 {
 $this->updateSlug($entity);
 }

 public function preUpdateEntity($entity)
 {
 $this->updateSlug($entity);
 }

 private function updateSlug($entity)
 {
 if (method_exists($entity, 'setSlug') and method_exists($entity, 'getTitle')) {
 $entity->setSlug($this->get('app.slugger')->slugify($entity->getTitle()));
 }
 }
}

Override the AdminController Methods per Entity

Before executing the methods showed above (listAction(), showAction(), etc.),
the controller looks for the existence of methods created specifically for the
current entity. These specific methods are called like the regular methods, but
they include the entity name as part of their names:

protected function list<EntityName>Action();
protected function search<EntityName>Action();
protected function show<EntityName>Action();
// ...
protected function createNew<EntityName>Entity();
// ...
protected function prePersist<EntityName>Entity();
protected function preUpdate<EntityName>Entity();
// ...

TIP

Given the syntax of method names, it’s recommended to use CamelCase notation
to set the entity names.

Suppose that you have a User entity which requires to pass the roles of the
new user to its constructor. If you try to create new users with EasyAdmin,
you’ll see an error because the entity constructor is missing a required
argument.

Instead of overriding the createNewEntity() method and check for the
User entity, you can just define the following method:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 // Customizes the instantiation of entities only for the 'User' entity
 public function createNewUserEntity()
 {
 return new User(array('ROLE_USER'));
 }
}

Customization Based on Entity Controllers

If your backend is medium-sized, the previous overriding mechanism doesn’t scale
well because it requires you to put all the custom code in the same AdminController.
In those cases, you can make each entity to use a different controller.

Step 1. Create a new controller class (for example ProductController)
anywhere in your Symfony application and make it extend from the default
AdminController class:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Admin;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class ProductController extends BaseAdminController
{
 // ...
}

Step 2. Define the controller configuration option for the entity that
will use that controller and set the fully qualified class name as its value:

easy_admin:
 entities:
 # ...
 Product:
 controller: AppBundle\Admin\ProductController
 # ...

Step 3. You can now override any of the default AdminController methods
and they will be executed only for the Product entity. Repeat these steps for
the other backend entities that you want to customize.

NOTE

It’s not mandatory that your custom controllers extend from the default
AdminController class, but doing that will simplify the code of your
controllers.

NOTE

In addition to the custom controller fully qualified class name, the controller
option also works for controllers defined as services. Just set the name of
the service as the value of the controller option.

Customization Based on Symfony Events

During the execution of the backend actions, lots of events are triggered. Using
Symfony’s event listeners or event subscribers you can hook to these events and
modify the behavior of your backend.

EasyAdmin events are defined in the EasyAdmin\Event\EasyAdminEvents class.
They are triggered before and after important operations and their names follow
the PRE_* and POST_* pattern:

final class EasyAdminEvents
{
 // Events related to initialize()
 const PRE_INITIALIZE;
 const POST_INITIALIZE;

 // Events related to the main actions
 const PRE_DELETE;
 const POST_DELETE;
 const PRE_EDIT;
 const POST_EDIT;
 const PRE_LIST;
 const POST_LIST;
 const PRE_NEW;
 const POST_NEW;
 const PRE_SEARCH;
 const POST_SEARCH;
 const PRE_SHOW;
 const POST_SHOW;

 // Events related to Doctrine entities
 const PRE_PERSIST;
 const POST_PERSIST;
 const PRE_UPDATE;
 const POST_UPDATE;
 const PRE_REMOVE;
 const POST_REMOVE;

 // Events related to the Doctrine Query builders
 const POST_LIST_QUERY_BUILDER;
 const POST_SEARCH_QUERY_BUILDER;
}

The Event Object

Event listeners and subscribers receive an event object based on the
GenericEvent class [http://symfony.com/doc/current/components/event_dispatcher/generic_event.html] defined by Symfony. The subject of the event depends
on the current action:

		show, edit and new actions receive the current $entity object (this
object is also available in the event arguments as $event['entity']).

		list and search actions receive the $paginator object which contains
the collection of entities that meet the criteria of the current listing
(this object is also available in the event arguments as
$event['paginator']).

In addition, the event arguments contain all the AdminController properties
($config, $entity, $request and $em). You can access to them through the
getArgument() method or via the array access provided by the GenericEvent class.

Event Subscriber Example

The following example shows how to use an event subscriber to set the slug
property of the BlogPost entity before persisting it:

namespace AppBundle\EventListener;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\EventDispatcher\GenericEvent;
use AppBundle\Entity\BlogPost;

class EasyAdminSubscriber implements EventSubscriberInterface
{
 private $slugger;

 public function __construct($slugger)
 {
 $this->slugger = $slugger;
 }

 public static function getSubscribedEvents()
 {
 return array(
 'easy_admin.pre_persist' => array('setBlogPostSlug'),
);
 }

 public function setBlogPostSlug(GenericEvent $event)
 {
 $entity = $event->getSubject();

 if (!($entity instanceof BlogPost)) {
 return;
 }

 $slug = $this->slugger->slugify($entity->getTitle());
 $entity->setSlug($slug);

 $event['entity'] = $entity;
 }
}

←

 Chapter 6. Menu Configuration | Chapter 8. About this Project →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/default-textarea.png
Description ‘Sed varius a risus eget aliquam. Ut suscipit posuere justo at vulputate. Nunc et feugiat
lectus. Ut eleifend mauris et risus ultrices egestas. Donec vel elit dui. Pellentesque vitae velit
ex.

Resources/doc/book/6-menu-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 6. Menu Configuration

The main menu of the backend is created automatically based on the entities
configuration. The default menu displays a list of links pointing to the list
view of each entity.

Most of the times there is no need to configure a custom menu. Keep reading this
chapter only if your backend is complex enough to require a menu with custom
labels, icons and submenus.

Reordering Menu Items

The easiest way to reorder the menu items is to reorder the contents of the
entities option in the backend configuration file. However, when the
configuration is too complex or its contents are scattered into several files,
it’s easier to define the menu option under the global design option.

Just provide the names of the entities in the order you want to display them in
the menu:

easy_admin:
 design:
 menu: ['User', 'Product', 'Category']
 # ...
 entities:
 Category:
 # ...
 Product:
 # ...
 User:
 # ...

Customizing the Labels, Icons and Targets of the Menu Items

Labels

Menu items related to entities display the value of the entity’s label option
(if defined) or the entity’s name. If you want to customize this value, use the
label option of the menu item (which must use the expanded configuration
format):

easy_admin:
 design:
 menu: ['User', 'Product', { entity: 'Category', label: 'Tags' }]
 # ...

Consider using this alternative YAML syntax to make menu configuration easier
to maintain:

easy_admin:
 design:
 menu:
 - User
 - Product
 - { entity: 'Category', label: 'Tags' }
 # ...

Icons

Menu items display a default icon next to their labels. Use the icon option to
customize any of these icons. The value of the icon option is the name of the
FontAwesome icon without the fa- prefix (in the next example, user will
display the fa-user icon):

easy_admin:
 design:
 menu:
 - { entity: 'User', icon: 'user' }
 - Product
 - { entity: 'Category', label: 'Tags', icon: 'tag' }
 # ...

If you want to remove the default icon and only display the menu label, define
the icon option and leave it empty or set it to null:

easy_admin:
 design:
 menu:
 - { entity: 'Product', icon: '' }
 # ...

Targets

By default, when clicking on a menu item, the linked resource is displayed in
the same browser tab. If you prefer to open the resource in a new tab or in a
specific HTML frame, define the link target using the target option of the
menu item:

easy_admin:
 design:
 menu:
 - { entity: 'Product', target: '_blank' }
 - { entity: 'User', target: '_parent' }
 - { entity: 'Category', target: '_self' }
 # ...

Changing the Backend Index Page

By default, when accessing the index page of the backend, you are redirected to
the list view of the first configured entity.

If you define a custom menu configuration, you can set any of its items as the
default backend index. Just add default: true to the menu item you want to
display when loading the backend index:

easy_admin:
 design:
 menu:
 - User
 - { entity: 'Product', default: true }
 - Category
 # ...

Linking Menu Items to Other Actions

Instead of linking to the list view of an entity, you can make a menu item to
link to other entity actions. Just define the params option to set the
parameters used to generate the link of the menu item:

easy_admin:
 design:
 menu:
 - { entity: 'User', params: { action: 'new' } }
 - Product
 - { entity: 'Category', params: { action: 'edit', id: 341 } }
 # ...

The params option is also useful to change the sort field or sort direction of
the list action:

easy_admin:
 design:
 menu:
 - { entity: 'User', params: { sortField: 'createdAt' } }
 - { entity: 'Product', params: { sortDirection: 'ASC' } }
 - { entity: 'Category', params: { sortField: 'name', sortDirection: 'ASC' } }
 # ...

Adding Menu Items not Based on Entities

The main menu can also display items not related to the backend entities.

Menu dividers

These items display a non-clickable label which acts as a divider in the menu.
They are created by adding a menu item which only defines the label option. In
this example, Inventory and Users are non-clickable labels which separate
the menu items:

easy_admin:
 design:
 menu:
 - { label: 'Inventory' }
 - Product
 - Category
 - { label: 'Users' }
 - Customers
 - Providers
 # ...

Absolute or Relative URLs

These items display a clickable label which points to the given absolute or
relative URL. They are useful to integrate external applications in the backend.
They are created by adding a menu item which defines the url option:

easy_admin:
 design:
 menu:
 - { label: 'Public Homepage', url: 'http://example.com' }
 - { label: 'Search', url: 'https://google.com' }
 - { label: 'Monitor Systems', url: '/monitor.php' }
 # ...

Symfony Routes

These items display a clickable label which points to the path generated with
the given Symfony route name. They are useful to integrate controllers which are
defined anywhere in your application.

They are created by adding a menu item which defines the route name in the
route option and optionally some route parameters in the params option:

easy_admin:
 design:
 menu:
 - { label: 'Public Homepage', route: 'homepage' }
 - { label: 'Some Task', route: 'user_some_task' }
 - { label: 'Other Task', route: 'other_task', params: { max: 7 } }
 # ...

Adding Submenus

The main menu items can be displayed in two-level submenus, which is very useful
for complex backends that manage lots of entities. Creating a submenu is as
easy as adding an empty menu item and defining its children option:

easy_admin:
 design:
 menu:
 - label: 'Clients'
 children: ['Invoice', 'Payment', 'User', 'Provider']
 - label: 'Products'
 children: ['Product', 'Stock', 'Shipment']
 # ...

In the above example, the main menu displays two “empty” elements called
Clients and Products. Click on any of these items and the second level
submenu will be displayed. In this example, the submenu items just display
regular links to the list view of some entities.

Combining all the options explained in the previous sections you can create very
advanced menus with two-level submenus and all kind of items:

easy_admin:
 design:
 menu:
 - label: 'Clients'
 icon: 'users'
 children:
 - { label: 'New Invoice', icon: 'file-new', route: 'createInvoice' }
 - { label: 'Invoices', icon: 'file-list', entity: 'Invoice' }
 - { label: 'Payments Received', entity: 'Payment', params: { sortField: 'paidAt' } }
 - label: 'About'
 children:
 - { label: 'Help', route: 'help_index' }
 - { label: 'Docs', url: 'http://example.com/external-docs' }
 - { label: %app.version% }

←

 Chapter 5. Actions Configuration | Chapter 7. Creating Complex and Dynamic Backends →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-form-group.png
ACME Backend & john.smith

LA Create User

Basic information . Contact information
=
Name * Email
X
& Surname * Phone number *
(2]

Only for administrators

ID*

Resources/doc/book/1-basic-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 1. Basic Configuration

This chapter explains all the basic and general configuration options available
for your backends. It’s common to change some of these options as soon as the
backend is created.

Changing the URL Used to Access the Backend

By default, the backend is accessible at the /admin URL of your Symfony
application. This value is defined in the prefix option when loading the
routes of the bundle. Change its value to meet your own requirements:

app/config/routing.yml
easy_admin_bundle:
 resource: "@EasyAdminBundle/Controller/"
 type: annotation
 prefix: /_secret_backend # <-- change this value

...

Changing the Name of the Backend

By default, the backend displays Easy Admin as its name. Use the site_name
option to change this value:

app/config/config.yml
easy_admin:
 site_name: 'ACME Megacorp.'
 # ...

The contents of this option are not escaped in the template, so you can use
HTML tags if needed:

app/config/config.yml
easy_admin:
 site_name: 'ACME <em style="font-size: 80%;">Megacorp.'
 # ...

This flexibility allows to use an HTML tag to display an image-based
logo instead of a text-based logo:

app/config/config.yml
easy_admin:
 site_name: ''
 # ...

Changing the Homepage of the Backend

By default, the homepage of the backend shows the items of the first configured
entity. Read the Menu Configuration chapter to learn how to change this
homepage.

Restricting the Access to the Backend

EasyAdmin relies on the underlying Symfony security mechanism to restrict the
access to your backend. Read the Symfony Security documentation [http://symfony.com/doc/current/book/security.html] to learn
how to protect the backend URLs.

When accessing a protected backend, EasyAdmin displays the name of user who is
logged in the application. Otherwise it displays “Anonymous User”.

Chapter 2. Design Configuration

→

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-edit-view.png
Easy Admin & Anonymous User

© Products Edit Product (#99)

© categori

Name * | Product Eleifend Libero

© Users
Price* | 2599

© Purchases
EAN* | 6389216636307

OfEEhasclions © EAN-13 valid code. Leave empy if unknown.

eleccionar archivo | Ningtin archivo seleccionado
Image file S N 9

Features *
Add a new item

Categories

~) Enabled

Description* (B | § o @ & [Fuente HTML

Phasellus id porta orci. Nulla porta lobortis ligula vel egestas. Ut suscipit posuere justo at vulputate. Aliquam sodales, odio id eleifend tristique,
uma nisl solicitudin uma, id varius orci quam id turpis. Pellentesque et sapien pulvinar, consectetur eros ac, vehicula odio. Nam porta porta
augue. Mauris dapibus, risus quis suscipit vulputate, eros diam egestas lioero, eu vulputate eros eros eu risus. Nunc et feugiat lectus.

Createdat* |Jan % 9 4 2016 & 15 4 55 &

Resources/doc/book/5-actions-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 5. Actions Configuration

EasyAdmin backends consist of views and actions. The view is the
page where you are (list, edit, show, etc.) and the action is what
you do on that page (search, delete, etc.)

Views include one or more actions to perform operations on the items
displayed in that view. For example, the default list view interface includes
four actions as buttons or links:

[image: List view interface]

These are the built-in actions included by default in each view:

| View | Default Actions
| —— | —————————————–
| list | delete, edit, list, new, search
| edit | delete, list
| new | list
| show | delete, edit, list

In this chapter you’ll learn how to enable, disable and customize these built-in
actions. If you want to create your own actions read the
How to Define Custom Actions tutorial.

Disable Actions for Some or All Entities

Use the disabled_actions option to disable any action globally or just for
some entity. For example, to disable the show action for all entities:

easy_admin:
 disabled_actions: ['show']
 # ...

When an action is disabled, the backend no longer displays it in any of the
views. Moreover, if some user tries to hack the URL to access to a disabled
action, they’ll see a Forbidden Action error page.

The disabled_actions option can also be defined per entity. For example, to
disable the new action just for the User entity:

easy_admin:
 entities:
 User:
 # ...
 disabled_actions: ['new']

The values of the disabled_actions options are merged in cascade for each
entity. If the backend configuration is the following:

easy_admin:
 disabled_actions: ['show']
 # ...
 entities:
 User:
 # ...
 disabled_actions: ['new']

The User entity will have both the new and the show actions disabled.

Configure the Actions Displayed in Each View

Adding Actions Globally

Define the actions to display on each backend view using the actions option:

easy_admin:
 edit:
 actions: ['show']
 list:
 actions: ['edit', 'search']
 # ...

The value of the actions option is merged with the default action
configuration for each view. In the above example, the edit view of all
entities will include the list, delete and show actions (the first two are
the default actions and the last one is explicitly configured).

Removing Actions Globally

Instead of adding new actions, sometimes you want to remove them. To do so, use
the same actions option but prefix each action name with a dash (-):

easy_admin:
 edit:
 actions: ['show', '-delete']
 list:
 actions: ['edit', 'search', '-delete']
 # ...

In the above example, the edit view will now include just the list and the
show actions because of the following configuration merge:

| Configuration merge | Actions
| ———————————- | ——————————-
| Default actions | list, delete
| Actions added by global config | show
| Actions deleted by global config | delete
| Resulting actions for entities | list, show

Adding Actions Per Entity

Define the actions to add to each entity view using the actions option:

easy_admin:
 entities:
 Invoice:
 list:
 actions: ['show']
 # ...

The global action configuration (if any) is merged with the entity’s action
configuration, as explained in the next section.

Removing Actions Per Entity

Define the actions to remove to each entity view using the actions option and
prefixing the action name with a dash (-):

easy_admin:
 entities:
 Customer:
 list:
 actions: ['-search']
 # ...

The global action configuration (if any) is merged in cascade with the
entity’s action configuration. Consider the following example:

easy_admin:
 list:
 actions: ['-edit']
 entities:
 Customer:
 list:
 actions: ['-search']
 # ...
 Invoice:
 list:
 actions: ['edit']
 # ...

This would be the configuration merging process for the Invoice entity:

| Configuration merge | Actions
| ——————————– | ——————————-
| Default actions | edit, new, search, show
| Actions added by global config | (none)
| Actions deleted by global config | edit
| Actions added by entity | edit
| Actions removed by entity | (none)
| Resulting actions for entity | edit, new, search, show

This would be the configuration merging process for the Customer entity:

| Configuration merge | Actions
| ——————————– | ——————————-
| Default actions | edit, new, search, show
| Actions added by global config | (none)
| Actions deleted by global config | edit
| Actions added by entity | (none)
| Actions removed by entity | search
| Resulting actions for entity | new, show

NOTE

Beware that the actions option just defines if an action should be
displayed or not, but it doesn’t disable the action (a malicious user could
hack the URL and change the action parameter manually). Use the
disabled_actions options to ban those actions entirely.

Customizing the Actions Displayed in Each View

In addition to adding or removing actions, you can also configure their
properties, such as their labels and icons. To do so, you must use the expanded
configuration format:

easy_admin:
 list:
 # shortcut configuration format
 actions: ['edit']

 # expanded configuration format
 actions:
 - { name: 'edit' }

Then, define any of the following options to customize the action:

		name, this is the only mandatory option. You can freely choose this value,
but it must be valid as a PHP method name (use characters, numbers and
underscores only).

		label, is the text displayed in the button or link associated with the
action. If not defined, the action label is the humanized version of its
name option.

		css_class, is the CSS class or classes applied to the link or button used
to render the action.

		icon, is the name of the FontAwesome icon displayed next to the link or
inside the button used to render the action. You don’t have to include the
fa- prefix of the icon name (e.g. to display the icon of a user, don’t
use fa fa-user or fa-user; just use user).

		target, is the value of the target HTML attribute applied to the button
or link associated with the action (e.g. _blank to open the action in a
new browser tab/window).

←

 Chapter 4. Edit and New Views Configuration | Chapter 6. Menu Configuration →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-listing-actions-label-only.png
Product Q search

n < Enabled + Name < Price * Created at < Tags Actions
100 Product Velit Donec 7.99 9/Jan /2016 electronics, toys Edit Delete
99 Product Eleifend Libero 25.99 9/Jan /2016 music, TV & video, GPS Edit Delete
98 Product Donec Platea 70.29 9/Jan /2016 electronics, software, laptops Edit Delete

_images/easyadmin-list-view-actions.png
LIST view ~ .~

Easy Admin

© Products

Categories

N

100
9%
9%
97
9%
9%

%

92
o1

1-1001100

Product

B e e

YEs

Product Velit Donec

Product Eleifend Libero

Product Donec Platea

Product Posuere Donec

Product Egestas Dictumst

Product Dapibus Commodo

Product Egestas Suscipit

Product Mauris Ipsum

Product Suscipit Lorem

Product Vulputate Eleifend

Price.

7.99

25.99

7029

28.00

3529

5.99

28.99

2629

3629

54.99

Image

Created at

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

9/Jan /2016

Tags

electronics, toys

music, TV & video, GPS

electronics, software, laptops.

electronics, books, music

hardware, toys, TV & video

wearables, GPS, monitors

movies, printers

music, hardware, monitors

software, laptops

TV & video, GPS

First Previous

LIRS NEW action

=1

ons

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Next

SEARCH action

Delete

oo EDIT action

oot
N __ DELETE action

Delete

Delete

Delete

Delete

Delete

Delete

> last»

_images/easyadmin-design-customization-custom-data-types.png
Product (RSN Add Product
n * Enabled * Name SPice +Cresedat Tags Actions

100 Product Velit Donec 7.99 9/Jan /2016 [LapTops | monrrons | Edit Delete
99 Product Eleifend Libero 25.99 9/Jan /2016 | weanasLes [Smanprones | movies TR IT0Y
98 Product Donec Platea 70.29 9/Jan /2016 | Larrors | Edit Delete

Resources/doc/book/4-edit-new-configuration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Chapter 4. Edit and New Views Configuration

This chapter explains how to customize the read-and-write views: edit and
new. You’ll learn all their configuration options and how to override or
tweak their templates.

Edit, New and Form Views

The Edit View is displayed when modifying the contents of any existing
entity. The New View is used when creating new items of the given entity.
The design of both views is almost identical:

[image: Edit view interface]

The Special form View

Most of the times you apply the same or very similar configuration to both the
edit and new views. Instead of duplicating the configuration, you can use
the special form view:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form: # <-- 'form' is applied to both 'new' and 'edit' views
 fields:
 - 'id'
 - { property: 'email', type: 'email', label: 'Contact' }
 # ...
 # ...

Any option defined in the form view is copied into the new and edit views.
However, any option defined in the edit and new view overrides the
corresponding form option. In other words, always use the form action to
define the common configuration, and then use the new and edit views to
define just the specific options you want to override:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 title: 'Add customer'
 form_options: { validation_groups: ['Default'] }
 new:
 form_options: { validation_groups: ['Default', 'Customer'] }
 edit:
 title: 'Edit customer'
 # ...

The above configuration is equivalent to the following:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 new:
 title: 'Add customer'
 form_options: { validation_groups: ['Default', 'Customer'] }
 edit:
 title: 'Edit customer'
 form_options: { validation_groups: ['Default'] }
 # ...

The merging of the form fields configuration is done recursively, so you can
change or add any option to any property. In addition, the following processing
takes place:

		All the fields defined in the form view are copied in the same order into
the edit and new views.

		Any field defined in the edit or new view which is not present in the
form view is added after the form fields.

		The edit and new views can remove any field defined in the form view
just by prefixing the name of the removed field with a dash - (e.g. add
a property called -name to remove the name property defined in form)

Consider the following complex form field configuration:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - id
 - { property: 'name', icon: 'user' }
 - { property: 'email', css_class: 'input-large' }
 new:
 fields:
 - '-id'
 - { property: 'email', type_options: { required: false } }
 edit:
 fields:
 - { property: 'name', icon: 'customer' }
 - { property: 'email', help: 'Phone number is preferred' }
 - phone
 # ...

The above configuration is equivalent to the following:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 new:
 - { property: 'name', icon: 'user' }
 - { property: 'email', css_class: 'input-large', type_options: { required: false } }
 edit:
 - id
 - { property: 'name', icon: 'customer' }
 - { property: 'email', css_class: 'input-large', help: 'Phone number is preferred' }
 - phone
 # ...

General Configuration

In order to make examples more concise, this section only shows the
configuration for the special form view, but you can apply the same options
to the other edit and new views.

Customize the Title of the Page

This option refers both to the value of the <title> element and to the visible
title displayed at the top of the page. By default the title is just the name of
the entity. Define the title option to set a custom page title:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 label: 'Customers'
 form:
 title: "Add/edit customers"
 # ...

The title option can include the following special variables:

		%entity_label%, resolves to the value defined in the label option of
the entity. If you haven’t defined it, this value will be equal to the
entity name. In the example above, this value would be Customers.

		%entity_name%, resolves to the entity name, which is the YAML key used
to configure the entity in the backend configuration file. In the example
above, this value would be Customer.

		%entity_id%, it’s only available for the edit view and it resolves to
the value of the primary key of the entity being edited. Even if the option
is called entity_id, it also works for primary keys with names different
from id.

CAUTION

In Symfony applications, YAML values enclosed with % and % have a special
meaning (they are considered container parameters). Escape these values
doubling the % characters:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 label: 'Customers'
 form:
 title: '%%entity_label%% listing'
 # ...

If several entities use the same custom title, you can define the default title
for all entities in the global edit.title and new.title options (these
global titles are always overridden by the title defined by each entity):

app/config/config.yml
easy_admin:
 edit:
 title: '%%entity_label%%_edit'
 new:
 title: 'New %%entity_label%%'

Customize the Properties Displayed

By default, the edit and new views display all the entity properties. Use
the fields option to explicitly set the properties to display in each view:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields: ['firstName', 'lastName', 'phone', 'email']
 # ...

This option is also useful to reorder the form fields, because by default they
are displayed in the same order as defined in the related Doctrine entity.

NOTE

Fields that represent an association with another entity are displayed as
<select> lists. For that reason, you must define the __toString() PHP
method in any entity which is used in a Doctrine relation. Otherwise you’ll
see an error message because the backend cannot represent the related object
as a string.

Virtual Properties

The fields option can also include properties that are not defined in the
Doctrine entities. These properties are called “virtual properties” and the
only requirement is that they must define a setter method for them. For
example, if your entity contains a setName() method but not a name property,
the fields option can include the name virtual property to set its value.

Defining Custom Form Options

By default, the forms built to create and edit entities only define the
data_class configuration option:

$form = $this->createFormBuilder($entity, array(
 'data_class' => 'AppBundle\Entity\Customer',
))
-> ...

If you need to pass custom options to the forms, define the form_options
option under the edit, new or form options:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 form_options: { validation_groups: ['Default', 'my_validation_group'] }
 # ...

The above example makes the backend use the following PHP code to build the form:

$form = $this->createFormBuilder($entity, array(
 'data_class' => 'AppBundle\Entity\Customer',
 'validation_groups' => array('Default', 'my_validation_group'),
))
-> ...

Customize the Form Fields

When form fields are not configured explicitly, the backend renders them with
the most appropriate widget according to their data types. If you prefer to
control their appearance, start by using the extended field configuration:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields: ['name', { property: 'email', label: 'Contact' }]
 # ...

Instead of using a string to define the property (e.g. 'email') you have to
define a hash with the name of the property ({ property: 'email' }) and the
options you want to define for it ({ ..., label: 'Contact' }).

If your entity contains lots of properties, consider using the alternative YAML
sequence syntax to improve the legibility of your backend configuration. The
following example is equivalent to the above example:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - name
 - { property: 'email', label: 'Contact' }
 # ...

These are the options that you can define for each field:

		property (mandatory): the name of the property to bet set (in new view)
or modified (in edit view). This is the only mandatory option when using
the extended field configuration format.

		label (optional): the content displayed in the <label> element of the
form field. The default label is the “humanized” version of the property name
(e.g. published is displayed as Published and dateOfBirth as Date of birth).

		help (optional): the help message displayed below the form field.

		css_class (optional): the CSS class applied to the parent HTML element
that contains the entire form field. For example, when using the default
Bootstrap form theme, this value is applied to the <div> element which
wraps the label, the widget and the error messages of the field.

		type (optional): the Symfony Form type used to render this field. You can
use the short type name (e.g. email) instead of its fully qualified class
name (e.g. Symfony\Component\Form\Extension\Core\Type\EmailType) even if
your application runs on Symfony 3 (the needed conversion is done internally
by the bundle).The allowed values are:
		Any of the Symfony Form types [http://symfony.com/doc/current/reference/forms/types.html].

		Any of the custom EasyAdmin form types: easyadmin_autocomplete (they are
explained later in this chapter).

		type_options (optional), a hash with the options passed to the Symfony
Form type used to render the field.

The type_options is the most powerful option because it literally comprises
tens of options suited for each form type:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - 'id'
 - { property: 'email', type: 'email', type_options: { trim: true } }
 - { property: 'interests', type_options: { expanded: true, multiple: true } }
 - { property: 'updated_at', type_options: { widget: 'single_text' } }

Read the Symfony Form type reference [http://symfony.com/doc/current/reference/forms/types.html]
to learn about all the available options, their usage and allowed values.

Formatting Dates and Numbers

Customizing Date and Time Properties

Unlike the list, search and show views, there are no configuration options
to define the date/time format for edit and new form fields. You must use
instead the options defined by Symfony’s DateTimeType, DateType and
TimeType types.

For example, to display your dates as a single <input> text element, define
the widget form field option (commonly used together with format):

easy_admin:
 entities:
 Event:
 edit:
 fields:
 - { property: 'startsAt', type_options: { widget: 'single_text' } }
 # ...

Customizing Numeric Properties

Similarly, there are no configuration options to define the formatting of the
numeric values for the edit and new views. You must use instead the options
defined by Symfony’s NumberType, IntegerType, MoneyType and PercentType
types.

For example, to display a numeric property that stores prices, you can define
the currency option of the MoneyType form type:

easy_admin:
 entities:
 Product:
 edit:
 fields:
 - { property: 'price', type: 'money', type_options: { currency: 'EUR' } }
 # ...

Custom Doctrine Types

When your application defines custom Doctrine DBAL types, you must also define
a custom form type for them before using them as form fields. Imagine that your
application defines a UTCDateTime type to convert the timezone of datetime
values to UTC before saving them in the database.

If you add that type in a property as follows, you’ll get an error message
saying that the utcdatetime type couldn’t be loaded:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - { property: 'createdAt', type: 'utcdatetime' }
 # ...
 # ...

This problem is solved defining a custom utcdatetime Form Type. Read the
How to Create a Custom Form Field Type [http://symfony.com/doc/current/cookbook/form/create_custom_field_type.html] article to learn how to define
custom form types.

EasyAdmin Form Types

In addition to the Symfony Form types, fields can use any of the following types
defined by EasyAdmin.

Autocomplete

It’s similar to Symfony’s Entity type, but the values are loaded on demand
via Ajax requests based on the user’s input. This type is useful to improve the
backend performance when a field is related to an entity with lots of database
records:

easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 form:
 fields:
 - { property: 'category', type: 'easyadmin_autocomplete' }
 # ...
 # ...

The easyadmin_autocomplete type configures the class of the related entity
automatically. If you prefer to define it explicitly, do it in the type options:

...
- { property: 'category', type: 'easyadmin_autocomplete', type_options: { class: 'AppBundle\Entity\Category' } }

When the user types in an autocomplete field, EasyAdmin performs a fuzzy search
on all the properties of the related entity. This is the same behavior applied
when using the backend search form.

The autocomplete action returns to the browser a JSON array of
{ id: '...', text: '...' } tuples. The id is used as the form field value
and the text is the value displayed to the user.

By default, the entity’s primary key is used for the id property and the
(string) $entity conversion is used for the text property. Therefore, you
must define the __toString() method in all the entities used in autocomplete
form fields.

If the number of autocomplete suggestions is large, they are paginated to
display a maximum of 10 results. Define the show.max_results option to
change this value:

app/config/config.yml
easy_admin:
 show:
 max_results: 20
 # ...

Advanced Form Design

Selecting the Form Theme

By default, forms are displayed using the horizontal style defined by the
Bootstrap 3 CSS framework:

[image: Default horizontal form style]

The form style can be changed with the form_theme design option. In fact, the
default form style is equivalent to using this configuration:

easy_admin:
 design:
 form_theme: 'horizontal'
 # ...

If you prefer to display your forms using the vertical Bootstrap style,
change the value of this option to vertical:

easy_admin:
 design:
 form_theme: 'vertical'
 # ...

The same form shown previously will now be rendered as follows:

[image: Vertical form style]

The horizontal and vertical values are just nice shortcuts for the two
built-in form themes. But you can also use your own form themes:

easy_admin:
 design:
 form_theme: '@App/form/custom_layout.html.twig'
 # ...

The form_theme option even allows to define an array of form themes and all of
them will be used when rendering the backend forms:

easy_admin:
 design:
 form_theme:
 - '@App/form/custom_layout.html.twig'
 - 'form_div_layout.html.twig'
 # ...

Customizing the Form Layout

The default form layout is pretty basic: fields are displayed in the same order
they were defined and they span the full browser window width. However, forms
can also include special design elements (dividers, groups, sections) to create
more advanced layouts.

Form Dividers

This is the simplest form design element. It just displays a straight horizontal
line. It’s useful to easily separate fields in long forms:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - id
 - { type: 'divider' }
 - name
 - surname
 - { type: 'divider' }
 - email
 - phoneNumber
 # ...

[image: A form using dividers to separate its fields]

Form Sections

This design element helps you divide a long form into different sections defined
by a title and, optionally, an icon, a help message and a custom CSS class:

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - id
 - { type: 'section', label: 'User Details' }
 - name
 - surname
 - { type: 'section', label: 'Contact information', icon: 'phone',
 help: 'Phone number is preferred', css_class: 'danger' }
 - email
 - phoneNumber
 # ...

A form that includes sections is still displayed as a single form that spans
the entire browser window width. Multi-column forms are created with “groups”
as explained below.

[image: A form using sections to separate its fields]

Form Groups

This element groups one or more fields and displays them separately from the
rest of the form fields. It’s useful to create multi-column forms and to create
very advanced layouts.

easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 form:
 fields:
 - { type: 'group', css_class: 'col-sm-6', label: 'Basic information' }
 - name
 - surname
 - { type: 'group', label: 'Contact information', icon: 'phone',
 css_class: 'col-sm-6' }
 - email
 - phoneNumber
 - { type: 'group', css_class: 'col-sm-6', help: 'Only for administrators' }
 - id
 # ...

TIP

When using form groups, it’s recommended to use the vertical form theme.
Otherwise, the field label will take up too much space.

[image: A form using groups to separate its fields]

TIP

Because of the way CSS works, when creating multi-column forms is common to
have ugly gaps between some rows and columns. EasyAdmin provides a .new-row
CSS class that forces the form group to be displayed in a new row:

...
- { type: 'group', css_class: 'new-row ...' }

This solves most of the issues, but sometimes you might be forced to also
reorder the form group positions.

Design elements can be combined to display dividers and sections inside groups
and create advanced layouts:

[image: A complex form layout combining dividers, sections and groups]

Advanced Design Configuration

Default Templates

EasyAdmin defines seven Twig templates to create its interface. These are the
four templates related to edit and new views:

		layout, the common layout that decorates the rest of the main templates;

		new, renders the page where new entities are created;

		edit, renders the page where entity contents are edited;

		form, renders the form included in the new and edit views.

NOTE

Unlike the properties displayed on the list, search and show views, you
can’t easily override the template fragment used to render each form field.
Instead, use the form_theme option explained in the previous sections to
make EasyAdmin use your own Symfony Form theme when rendering the backend forms.

Depending on your needs you can override these templates in different ways:

		Override the templates via configuration, when you want to decide where
to store the custom templates;

		Override the templates via convention, which is faster to set up because
you store the custom templates in a specific directory defined by EasyAdmin.

Selecting the Template to Render

Before selecting a template to render some contents, EasyAdmin looks for these
configuration options and directory locations to check if your backend has
overridden it (the first template which exists is used):

		easy_admin.entities.<EntityName>.templates.<TemplateName> configuration
option.

		easy_admin.design.templates.<TemplateName> configuration option.

		app/Resources/views/easy_admin/<EntityName>/<TemplateName>.html.twig

		app/Resources/views/easy_admin/<TemplateName>.html.twig

		@EasyAdmin/default/<TemplateName>.html.twig

The last one is the path of the built-in templates and they are always available.
The following sections explain the first four ways to customize the templates
used by the backend.

TIP

Regardless of how you override the default templates, it’s convenient to check
first the variables provided by the backend to those templates. The easiest
way to do this is to include an empty {{ dump() }} call in your templates.

Overriding the Default Templates By Configuration

If you prefer to decide where to store your custom templates, use the templates
option globally or for some specific entities.

For example, to override the edit template just for the Customer entity,
create the edit.html.twig template somewhere in your application and then,
configure its location with the templates option:

easy_admin:
 entities:
 Customer:
 # ...
 templates:
 # Twig namespace template syntax
 edit: '@User/Backend/edit.html.twig'
 # legacy template syntax works too:
 # edit: 'UserBundle:Backend:edit.html.twig'

Similarly, to override some template for all entities, define the templates
option under the global design option:

easy_admin:
 design:
 templates:
 # Twig namespace template syntax
 edit: '@App/Backend/edit.html.twig'
 # legacy template syntax works too:
 edit: 'AppBundle:Backend:edit.html.twig'
 entities:
 # ...

Overriding the Default Templates By Convention

If you don’t mind the location of your custom templates, consider creating them
in the app/Resources/views/easy_admin/ directory. When the templates option
is not defined, EasyAdmin looks into this directory before falling back to the
default templates.

For example, to override the edit template just for the Customer entity,
you only need to create this template in this exact location (there is no need
to define the templates configuration option):

your-project/
├─ app/
│ ├─ ...
│ └─ Resources/
│ └─ views/
│ └─ easy_admin/
│ └─ Customer/
│ └─ edit.html.twig
├─ src/
├─ vendor/
└─ web/

In case you want to override the template for all entities, define the new
template right under the easy_admin/ directory:

your-project/
├─ app/
│ ├─ ...
│ └─ Resources/
│ └─ views/
│ └─ easy_admin/
│ └─ edit.html.twig
├─ src/
├─ vendor/
└─ web/

←

 Chapter 3. List, Search and Show Views Configuration | Chapter 5. Actions Configuration →

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-form-vertical.png
Easy Admin

© Products

© Categories

© Users

Purchases

Purchase ltems

Create Product

Name *

Price *

EAN*

O EAN-1

Image file
Selcccionar archivo | Ningin archivo seleccionado

Features *

Categories

*) Enabled

Description *

B I S=

[E}

&

B

[Fuente HTML

Created at *

Jan 4|15 4| 2016 4 15 432 &

& Anonymous User

Add a new item

Resources/doc/tutorials/i18n.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Translate the Backend

EasyAdmin leverages the Symfony Translation component to provide built-in support
for translating backends into any language. The translation process is divided
into two steps:

		Translating the elements of the EasyAdmin interface;

		Translating your own contents (such as the main menu and the property labels).

The elements of the interface are translated using the EasyAdminBundle domain.
The rest of the elements are translated by default using the messages domain,
but you can use any other domain defined in the translation_domain option, as
explained at the end of this article.

Before translating your backend, make sure that the translator service is
enabled in the application (projects based on the Symfony Standard Edition have
it disabled by default):

app/config/config.yml
framework:
 translator: { fallbacks: ["en"] }

Translate the Backend Interface

The backend interface uses the same language as the underlying Symfony
application. If you want to change it, update the value of the locale option
in the app/config/parameters.yml file.

EasyAdmin is already translated into tens of languages thanks to the generosity
of its community. We’re actively looking for more translations, so please
consider contributing a translation for your own language.

NOTE

Although it’s not recommended to do it, if you want to change any of the
built-in translations defined under the EasyAdminBundle domain, use the
translation override mechanism [http://symfony.com/doc/current/cookbook/bundles/override.html#translations]
provided by Symfony.

Translate the Main Menu Labels

Menu items use the entity name as their label. The entity name is the YAML
key used to define the configuration of each entity. For example, the following
configuration would show two menu items called Customers and Orders:

app/config/config.yml
easy_admin:
 entities:
 Customers:
 class: AppBundle\Entity\User
 Orders:
 class: AppBundle\Entity\Purchase

The messages.xx.yml (or messages.xx.xlf) file for the previous example would
need to use Customers and Orders as the keys of the translations. Example:

app/Resources/translations/messages.es.yml
Customers: Clientes
Orders: Ventas

Main menu labels can be customized thanks to the label option of each entity.
You can even use structured translation keys instead of the real contents:

app/config/config.yml
easy_admin:
 entities:
 Customers:
 label: app.menu.customers
 class: AppBundle\Entity\User
 Orders:
 label: app.menu.orders
 class: AppBundle\Entity\Purchase

In this case, the translation file should use the value of the label option as
the keys of the translations (and you should also create the file for the
original language used by the translation keys):

app/Resources/translations/messages.en.yml
app.menu.customers: Customers
app.menu.orders: Orders

app/Resources/translations/messages.es.yml
app.menu.customers: Clientes
app.menu.orders: Ventas

Translate Property Labels

The behavior of the property labels is very similar to the one explained in the
previous section for the main menu. By default, the label of each property is
the “humanized” version of its name:

| Property value | Default property label
| ————— | ———————-
| propertyname | Propertyname
| propertyName | Property name
| property_name | Property name

Consider the following configuration:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields: ['firstName', 'lastName']
 # ...

The backend will display First name and Last name as the labels of the
properties, so those are the translation keys that must be used:

app/Resources/translations/messages.es.yml
First name: Nombre
Last name: Apellidos

Alternatively, you can use the label option of each property to define its
label explicitly. You can even use structured translation keys instead of the
real contents:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 list:
 fields:
 - { property: 'firstName', label: 'app.users.firstName' }
 - { property: 'lastName', label: 'app.users.lastName' }
 # ...

In this case, the translation file should use the value of the label option as
the keys of the translations (and you should also create the file for the
original language used by the translation keys):

app/Resources/translations/messages.en.yml
app.menu.firstName: First name
app.menu.lastName: Last name

app/Resources/translations/messages.es.yml
app.menu.firstName: Nombre
app.menu.lastName: Apellidos

Translate Custom Templates

All the built-in templates include the following tag to set EasyAdminBundle as
the defualt domain used to translate the contents of that template:

{% trans_default_domain "EasyAdminBundle" %}

When overriding templates in any of your views or properties, make sure to add
this tag at the top of each file to not break the backend internationalization.
If needed, you can also define any other translation domain and skip the default
one in your templates:

{{ 'content_to_translate' | trans({}, 'MyCustomTranslationDomain') }}

The above template uses the translations defined in the
app/Resources/translations/MyCustomTranslationDomain.en.xlf file (replace
en by your locale and xlf by the desired translation format) instead of the
default EasyAdmin translations.

Using a custom translation domain

By default EasyAdmin uses the messages domain to translate the contents of
your backend. Define the global translation_domain option to use your own
custom domain:

app/config/config.yml
easy_admin:
 translation_domain: 'admin'
 entities:
 Customers:
 # ...
 Orders:
 # ...

This translation domain is applied to all entities, but it can be overridden
locally by each entity:

app/config/config.yml
easy_admin:
 translation_domain: 'admin'
 entities:
 Customers:
 # ...
 Orders:
 translation_domain: 'messages'
 # ...

In the above example, the contents of the Customers entity are translated with
the admin domain whereas the contents of the Ordersentity are translated
with the messages domain.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-boolean-field-label.png
n * Enabled

100 =

99 [

_images/easyadmin-form-section.png
ACME Backend & john.smith

LA Create User
& NN
B
ol User Details
A nName ¢
o
Surname *

. Contact information
Phone number is preferred

Phone number *

_images/default-wysiwyg.png
Description B I 5@”

L EE | [@ source |

‘Sed varius a risus eget aliquam. Ut suscipit posuere justo at vulputate. Nunc et feugiat lectus. Ut
eleifend mauris et risus ultrices egestas. Donec vel elit dui. Pellentesque vitee veit ex.

search.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-form-complex-layout.png
john.smith

ACME Backend

LA Create Product

Basic information © Product Details

=]
Name * EAN-13*

EAN-13 valid code. Leave empty if unknown.

L]

Description *
P Price *

[0 B & <)@ e .

o (B 1se=

A Advanced Settings

Reserved for administrators use

) Published

Created at *

body p 4

Y Attachments

Categories

Image file *

Selecionar archivo | Ningiin archivo seleccionado

Resources/doc/tutorials/upload-files-and-images.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Upload Files and Images

In this article you’ll learn how to allow uploading files in your backends, both
images and regular files, such as PDF files.

Although EasyAdmin doesn’t provide any built-in feature to upload files, it
integrates seamlessly with VichUploaderBundle [https://github.com/dustin10/VichUploaderBundle],
the most popular file uploader Symfony bundle.

Installing the File Uploader Bundle

		Install the bundle:

$ composer require vich/uploader-bundle

		Enable the bundle:

// app/AppKernel.php
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 return array(
 // ...
 new Vich\UploaderBundle\VichUploaderBundle(),
);
 }
}

		Add the minimal configuration that makes the bundle work:

vich_uploader:
 db_driver: orm

Uploading Image Files

First you’ll learn how to upload and preview images in the backend. Then, in the
next section, you’ll see how to upload other types of files (such as PDFs).

Configuring the Uploading of Image Files

Before uploading files, you must configure the “mappings” for the VichUploaderBundle.
These “mappings” tell the bundle where should the files be uploaded and which
paths should be used to display them in the application.

This is the configuration needed for this example:

app/config/config.yml
parameters:
 app.path.product_images: /uploads/images/product

...

vich_uploader:
 # ...
 mappings:
 product_images:
 uri_prefix: %app.path.product_images%
 upload_destination: %kernel.root_dir%/../web/uploads/images/products

The product_images value is a freely chosen name which holds the configuration
for a specific mapping. This value will be used later in the entity configuration.

The uploaded images are stored in the directory defined in upload_destination.
The uri_prefix option defines the base path prepended to file paths so they
can be displayed in the application. In this example, the uri_prefix value is
defined as a container parameter, because we’ll reuse this value in the EasyAdmin
configuration later.

Preparing your Entities to Persist Images

Considering that the Product entity is already created, the first change you
need to make is adding the Uploadable annotation to the entity class:

use Symfony\Component\HttpFoundation\File\File;
use Vich\UploaderBundle\Mapping\Annotation as Vich;

/**
 * @ORM\Entity
 * @Vich\Uploadable
 */
class Product
{
 // ...
}

Then, you need to add two new properties (image and imageFile):

use Vich\UploaderBundle\Mapping\Annotation as Vich;

/**
 * @ORM\Entity
 * @Vich\Uploadable
 */
class Product
{
 /**
 * @ORM\Column(type="string", length=255)
 * @var string
 */
 private $image;

 /**
 * @Vich\UploadableField(mapping="product_images", fileNameProperty="image")
 * @var File
 */
 private $imageFile;

 /**
 * @ORM\Column(type="datetime")
 * @var \DateTime
 */
 private $updatedAt;

 // ...

 public function setImageFile(File $image = null)
 {
 $this->imageFile = $image;

 // VERY IMPORTANT:
 // It is required that at least one field changes if you are using Doctrine,
 // otherwise the event listeners won't be called and the file is lost
 if ($image) {
 // if 'updatedAt' is not defined in your entity, use another property
 $this->updatedAt = new \DateTime('now');
 }
 }

 public function getImageFile()
 {
 return $this->imageFile;
 }

 public function setImage($image)
 {
 $this->image = $image;
 }

 public function getImage()
 {
 return $this->image;
 }
}

The image property stores just the name of the uploaded image and it’s
persisted in the database. The imageFile property stores the binary contents
of the image file and it’s not persisted in the database (that’s why it doesn’t
define a @ORM annotation).

The imageFile property must define a @Vich\UploadableField annotation that
configures both the “mapping” to use (product_images in this case) and the
entity property that stores the image name (image in this case).

Displaying the Images in the list and show Views

Use the special image type in the list and show views to display the
contents of a property as an image:

easy_admin:
 entities:
 Product:
 # ...
 list:
 fields:
 - { property: 'image', type: 'image', base_path: %app.path.product_images% }
 # ...
 show:
 fields:
 - { property: 'image', type: 'image', base_path: %app.path.product_images% }

The property used to display the image must be the one that stores the image path
(image in this case) and not the one that stores the binary contents of the
image (imageFile). Since this property only stores the image name, you must also
define the base_path option to prepend the path to make the image accessible.

Instead of hardcoding the base_path value, this example uses the
app.path.product_images container parameter which also was used in the
VichUploaderBundle configuration.

Uploading the Images in the edit and new Views

The easiest way to enable uploading images in the forms of the edit and new
views is to define the type of the property as file:

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 - { property: 'imageFile', type: 'file' }
 # ...

In this case, the property must be the one which stores the binary contents of
the image (imagefile in this case) and not the one that stores just the name
(image in this case).

Although this works as expected, its behavior is too basic (for example you can’t
see a preview of the existing image before uploading a new file). In order to get
the best experience, use VichImageType as the type of the property:

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 - { property: 'imageFile', type: 'vich_image' }
 # ...

TIP

Even if your application uses Symfony 3 there is no need to use the FQCN of
the VichImageType (type: 'Vich\UploaderBundle\Form\Type\VichImageType')
because EasyAdmin supports the short types for some popular third-party bundles.

Uploading Other Types of Files

Adding support for uploading other types of files (such as PDF files) is similar
to uploading images. That’s why in the next sections we’ll show the required
steps, but we won’t repeat the same explanations. In this example, we’ll add
support for uploading PDFs that represent the contracts subscribed by the users.

Configuring the Uploading of Files

Define the “mapping” for the new user contracts:

parameters:
 # ...
 app.path.user_contracts: /uploads/files/user/contracts

vich_uploader:
 # ...
 mappings:
 user_contracts:
 uri_prefix: %app.path.user_contracts%
 upload_destination: %kernel.root_dir%/../web/uploads/files/user/contracts

Preparing your Entities to Persist Files

Considering that the User entity already exists, add two new properties to
store the name of the contract (contract property) and the binary contents of
the PDF file (contractFile property). Only the first property is persisted in
the database:

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\HttpFoundation\File\File;
use Vich\UploaderBundle\Mapping\Annotation as Vich;

/**
 * @ORM\Entity
 * @Vich\Uploadable
 */
class User
{
 /**
 * @ORM\Column(type="string", length=255)
 * @var string
 */
 private $contract;

 /**
 * @Vich\UploadableField(mapping="user_contracts", fileNameProperty="contract")
 * @var File
 */
 private $contractFile;

 // ... getters and setters for these properties
}

Displaying the Files in the list and show Views

This is the most tricky part of adding support for file uploads. Contrary to
images, it’s not easy to provide a preview of the contents for any kind of file.
Instead of trying to do that, we’ll display a View contract (PDF) link in the
list and show views.

First, add the contract property to the list of properties to display:

easy_admin:
 entities:
 User:
 # ...
 list:
 fields:
 # ...
 - contract

Then, add the template option to define the custom template to use to render
the contents of this property:

easy_admin:
 entities:
 User:
 # ...
 list:
 fields:
 # ...
 - { property: 'contract', template: 'contract.html.twig' }

Now you must create the app/Resources/views/easy_admin/contract.html.twig
template with this content:

View contract (PDF)

Reload your backend and you’ll see the link to the contract PDF. However, if you
click on the link, you won’t see the file. The reason is that the contract
property only stores the name of the file, but you also need the public path to
that file (which in this case is stored in the app.path.user_contracts parameter).

The solution is simple: you can define any number of arbitrary options for a
property and they will be available in your custom template via the field_options
option. So you just need to add a new option in the property definition:

Before
- { property: 'contract', template: 'contract.html.twig' }

After
- { property: 'contract', template: 'contract.html.twig', base_path: %app.path.user_contracts% }

Then, update the custom template to use this new option:

View contract (PDF)

TIP

You can also solve this issue using Symfony asset packages instead of relying
on EasyAdmin options. The custom template would look like this:

View contract (PDF)

Uploading the Files in the edit and new Views

Thanks to the custom VichFileType provided by the bundle, this is pretty
straightforward:

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 - { property: 'contractFile', type: 'vich_file' }
 # ...

TIP

Even if your application uses Symfony 3 there is no need to use the FQCN of
the VichFileType (type: 'Vich\UploaderBundle\Form\Type\VichFileType')
because EasyAdmin supports the short types for some popular third-party bundles.

Customizing Form Fields for Image and File Uploading

EasyAdmin renders the VichUploaderBundle form fields using a custom form theme
that improves their default styling. For example, image fields are rendered as
thumbnails which display the original images when clicking on them.

If you prefer to use the original VichUploaderBundle styles, add its form theme
in the form_theme configuration option (put it at the end to override
EasyAdmin’s default form theme):

easy_admin:
 # ...
 design:
 form_theme: ['horizontal', 'VichUploaderBundle:Form:fields.html.twig']

Apply the same technique in case you want to use your own form theme instead
of the one provided by VichUploaderBundle.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

CONTRIBUTORS.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Contributors

EasyAdmin is a project originally published by Javier Eguiluz [https://github.com/javiereguiluz] but it has been fixed, improved and spread thanks to the work of these amazing people (shown in approximate chronological order):

		Javier Eguiluz (javiereguiluz) [https://github.com/javiereguiluz]

		Grégoire Pineau (lyrixx) [https://github.com/lyrixx]

		Marcos Gómez Vilches (markitosgv) [https://github.com/markitosgv]

		Alex Rock Ancelet (Pierstoval) [https://github.com/Pierstoval]

		Christophe Coevoet (stof) [https://github.com/stof]

		Christian Flothmann (xabbuh) [https://github.com/xabbuh]

		Al Ganiev (helios-ag) [https://github.com/helios-ag]

		Hugo Hamon (hhamon) [https://github.com/hhamon]

		Iker Ibarguren (ikerib) [https://github.com/ikerib]

		Jordi Boggiano (Seldaek) [https://github.com/Seldaek]

		Manuel Aguirre (manuelj555) [https://github.com/manuelj555]

		Joeri Verdeyen (jverdeyen) [https://github.com/jverdeyen]

		Marc Morera (mmoreram) [https://github.com/mmoreram]

		Nicolas Kern (nicolaskern) [https://github.com/nicolaskern]

		Pascal Borreli (pborreli) [https://github.com/pborreli]

		Nicolas Lemahieu (nlemahieu) [https://github.com/nlemahieu]

		Maxime Steinhausser (ogizanagi) [https://github.com/ogizanagi]

		Massimiliano Arione (garak) [https://github.com/garak]

		Piotr Kędra (kedrap) [https://github.com/kedrap]

		Magnus Nordlander (magnusnordlander) [https://github.com/magnusnordlander]

		Nicolas Dewez (nicolasdewez) [https://github.com/nicolasdewez]

		Saba (jansabat) [https://github.com/jansabat]

		Peter Kokot (peterkokot) [https://github.com/peterkokot]

		Konstantin (KonstantinKuklin) [https://github.com/KonstantinKuklin]

		Antonio de Lucas (antoniojlm84) [https://github.com/antoniojlm84]

		Jesús Díez (jesusdiez) [https://github.com/jesusdiez]

		sr972 [https://github.com/sr972]

		Borislav Manolov (bmanolov) [https://github.com/bmanolov]

		Everton Júnior (ejkun) [https://github.com/ejkun]

		Stoyan Kyosev (skyosev) [https://github.com/skyosev]

		Alberto Vioque (mashware) [https://github.com/mashware]

		AQNOUCH Mohammed (aqnouch) [https://github.com/aqnouch]

		Patrick Kempff (patrickkempff) [https://github.com/patrickkempff]

		Gabi Udrescu (gabiudrescu) [https://github.com/gabiudrescu]

		thomasbeaujean [https://github.com/thomasbeaujean]

		Loïc Vernet (COil) [https://github.com/COil]

		Alejandro Pérez Batanero (alexgt9) [https://github.com/alexgt9]

		ismail BASKIN (ismailbaskin) [https://github.com/ismailbaskin]

		Marcin Chwedziak (tiraeth) [https://github.com/tiraeth]

		Arthur Guigand (artggd) [https://github.com/artggd]

		Yonel Ceruto González (yceruto) [https://github.com/yceruto]

		Florent Viel (luxifer) [https://github.com/luxifer]

		Sebastián (sebastianlp) [https://github.com/sebastianlp]

		Ángel Guzmán Maeso (shakaran) [https://github.com/shakaran]

		Adam Motvička (motvicka) [https://github.com/motvicka]

		Peter van der Leek (pvdleek) [https://github.com/pvdleek]

		ReynierPM (reypm) [https://github.com/reypm]

		Luca Ferri (lucaferri) [https://github.com/lucaferri]

		mkalisz77 [https://github.com/mkalisz77]

		anboto [https://github.com/anboto]

		Fatih Kahveci (fatihkahveci) [https://github.com/fatihkahveci]

		rubengc (rubengc) [https://github.com/rubengc]

		Julien JOURDE (Jjourde) [https://github.com/Jjourde]

		unexge [https://github.com/unexge]

		Josef Sukdol (k3rn3l3rr0r) [https://github.com/k3rn3l3rr0r]

		Emirald Mateli (maldoinc) [https://github.com/maldoinc]

		Javier Núñez (javiernunez) [https://github.com/javiernunez]

		Huygens Adrien (samouraii) [https://github.com/samouraii]

		Selim Can CABA (slmcncb) [https://github.com/slmcncb]

		Tomáš Votruba (TomasVotruba) [https://github.com/TomasVotruba]

		Alexander Dorozhkin (remedge) [https://github.com/remedge]

		Fco Javier Rodríguez Cuevas (javierrodriguezcuevas) [https://github.com/javierrodriguezcuevas]

		Roberto Ramírez (iBet7o) [https://github.com/iBet7o]

		Davi Alexandre (davialexandre) [https://github.com/davialexandre]

		dayofr [https://github.com/dayofr]

		Emmanuel BALLERY (emmanuelballery) [https://github.com/emmanuelballery]

		Moritz (MHaendel) [https://github.com/MHaendel]

		Thomas Berends (ThomasBerends) [https://github.com/ThomasBerends]

		Gary (GaryPEGEOT-WIC) [https://github.com/GaryPEGEOT-WIC]

		Raul Ferriz (raistlin) [https://github.com/raistlin]

		Jordi Fernandez (Yunyun548) [https://github.com/Yunyun548]

		Vincent Robic (vrobic) [https://github.com/vrobic]

		Marcin Paździora (forsetius) [https://github.com/forsetius]

		JakeFr [https://github.com/JakeFr]

		Gonzalo Alonso (gonzakpo) [https://github.com/gonzakpo]

		Ondřej Machulda (OndraM) [https://github.com/OndraM]

		Wagner Nicolas (n1c01a5) [https://github.com/n1c01a5]

		Tim Ward (UFTimmy) [https://github.com/UFTimmy]

		anthony-launay [https://github.com/anthony-launay]

		alborq [https://github.com/alborq]

		Nick (nedelenbos) [https://github.com/nedelenbos]

		Anna (annaos) [https://github.com/annaos]

		Krzysztof Trzos (ktrzos) [https://github.com/ktrzos]

		rouflak (rouflak) [https://github.com/rouflak]

		Giancarlo Ventura (KhanMaytok) [https://github.com/KhanMaytok]

		Fabien Potencier (fabpot) [https://github.com/fabpot]

		rogamoore (rogamoore) [https://github.com/rogamoore]

		Tomasz Hanc (tomaszhanc) [https://github.com/tomaszhanc]

If you have contributed somehow to this project and I’ve forgotten to mention you, please ping me.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-listing-actions-icon-only.png
Product (RSN Add Product
n * Enabled * Name :Price * Createdat < Tags Actions

100 Product Velit Donec 7.99 9/Jan /2016 electronics, toys s x
99) vo | Product Eleifend Libero 2599 9/Jan /2016 music, TV & video, GPS s x
98) ro | Product Donec Platea 7029 9/Jan /2016 electronics, software, laptops s x

Resources/doc/tutorials/tips-and-tricks.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Tips and Tricks

Improving Backend Performance

EasyAdmin does an intense use of Doctrine metadata introspection to generate
the backend on the fly without generating any file or resource. For complex
backends, this process can add a noticeable performance overhead.

Fortunately, Doctrine provides a simple caching mechanism for entity metadata.
If your server has APC installed, enable this cache just by adding the
following configuration:

app/config/config_prod.yml
doctrine:
 orm:
 metadata_cache_driver: apc

In addition to apc, Doctrine metadata cache supports memcache, memcached,
xcache and service (for using a custom cache service). Read the
documentation about Doctrine caching drivers [http://symfony.com/doc/current/reference/configuration/doctrine.html#caching-drivers].

Note that the previous example configures metadata caching in config_prod.yml
file, which is the configuration used for the production environment. It’s not
recommended to enable this cache in the development environment to avoid having
to clear APC cache or restart the web server whenever you make any change to
your Doctrine entities.

This simple metadata cache configuration can improve your backend performance
between 20% and 30% depending on the complexity and number of your entities.

Create a Read-Only Backend

Disable the delete, edit and new actions for all views and the users
won’t be able to add, modify or remove any information:

easy_admin:
 disabled_actions: ['delete', 'edit', 'new']

Unloading the Default JavaScript and Stylesheets

EasyAdmin uses Bootstrap CSS and jQuery frameworks to build the interface.
In case you want to unload these files in addition to loading your own assets,
override the default layout.html.twig template and empty the
head_stylesheets and head_javascript Twig blocks.

Read the Advanced Design Customization section to learn how to override
default templates.

Removing Action Labels and Displaying Just Icons

By default, the actions showed in the list view table only display their
label (Edit, Show, etc.):

[image: Action Labels in Entity Listing]

Adding an icon for each action is as easy as defining their icon option:

easy_admin:
 list:
 actions:
 - { name: 'show', icon: 'search' }
 - { name: 'edit', icon: 'pencil' }
 # ...

This configuration makes the entity listing looks as follow:

[image: Action Labels and Icons in Entity Listing]

When displaying entities with lots of information, it may be useful to remove
the action label and display just their icons. To do so, define an empty string
for the label option or set its value to false:

easy_admin:
 list:
 actions:
 - { name: 'show', icon: 'search', label: '' }
 - { name: 'edit', icon: 'pencil', label: '' }
 # if you prefer, set labels to false
 # - { name: 'show', icon: 'search', label: false }
 # - { name: 'edit', icon: 'pencil', label: false }
 # ...

This configuration makes the entity listing looks as follow:

[image: Action Icons in Entity Listing]

Making the Backend Use a Different Language Than the Public Website

Imagine that the public part of your website uses French as its default locale.
EasyAdmin uses the same locale as the underlying Symfony application, so the
backend would be displayed in French too. How could you define a different
language for the backend?

You just need to get the translator service and execute the setLocale() method
befor executing the code of EasyAdmin. The easiest way to do that is to create
a custom admin controller and override the initialize() method as follows:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 protected function initialize(Request $request)
 {
 $this->get('translator')->setLocale('en');
 parent::initialize($request);
 }
}

Don’t Apply Global Doctrine Filters in the Backend

Doctrine filters [http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/filters.html] add conditions to your queries automatically. They are
useful to solve cases like “never display products which haven’t been published”
or “don’t display comments marked as deleted”.

These filters can be enabled for each query, but they are usually enabled
globally for the entire application thanks to a request listener:

use Symfony\Component\HttpKernel\Event\GetResponseEvent;

class DoctrineFilterListener
{
 // ...

 public function onKernelRequest(GetResponseEvent $event)
 {
 $this->em->getFilters()->enable('is_published');
 }
}

When using global Doctrine filters, you probably don’t want to apply them in the
backend. Otherwise you won’t see unpublished items or deleted comments in the
listings. Given that all EasyAdmin URLs are generated with a single route called
easyadmin, you can add the following to disable the Doctrine filters in the
backend:

public function onKernelRequest(GetResponseEvent $event)
{
 if ('easyadmin' === $event->getRequest()->attributes->get('_route')) {
 return;
 }

 // ...
}

Defining Dynamic Actions per Item

By default, in the list view all items display the same actions. If you need
to show/hide actions dynamically per item, you can do that in a custom template.
Consider a backend that displays the Delete action only for items that haven’t
been published yet (their status property is PUBLISHED):

{# app/Resources/views/easy_admin/list.html.twig #}
{% extends '@EasyAdmin/default/list.html.twig' %}

{% block item_actions %}
 {% set filtered_actions = {} %}
 {% for action_name, action_config in _list_item_actions %}
 {% if action_name == 'delete' and item.status|default(false) == 'PUBLISHED' %}
 {# remove the 'delete' action from published items #}
 {% else %}
 {% set filtered_actions = filtered_actions|merge([action_config]) %}
 {% endif %}
 {% endfor %}

 {% set _list_item_actions = filtered_actions %}

 {{ parent() }}
{% endblock item_actions %}

The solution work as follows:

		The backend defines a new list.html.twig template to override the
item_actions block, which is the one that displays the actions for each item.

		The default template defines the _list_item_actions variable to store the
actions to display for any given item. The custom template just needs to filter
these actions according to some rules.

		Finally, override the original _list_item_actions variable with the filtered
list of actions and execute the original code for this Twig block in the
parent template ({{ parent() }}).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/tutorials/complex-backend-config.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Manage Configuration for Complex Backends

The recommended way to start configuring your backend is to use the
app/config/config.yml file and put your configuration under the easy_admin
key. However, for medium-sized and large backends this configuration can be very
long and hard to maintain.

In those cases, it’s better to create a new app/config/easyadmin.yml file to
define all the configuration related to the backend and then, import that file
from the general config.yml file:

app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }
 - { resource: services.yml }
 - { resource: easyadmin.yml } # <-- add this line

app/config/easyadmin.yml # <-- create this file
easy_admin:
 # ...
 # copy all the configuration originally defined in config.yml
 # ...

Splitting Configuration into Several Files

If your application keeps growing, moving its configuration to easyadmin.yml
file won’t solve your problem. In this case it’s better to split the
configuration into different files.

Consider an application which defines the following configuration:

app/config/easyadmin.yml
easy_admin:
 site_name: '...'
 # ...
 design:
 # ...
 entities:
 Product:
 # ...
 User:
 # ...
 Category:
 # ...
 # ...

This configuration is going to be divided into four different files:

		design.yml for design related configuration;

		product.yml for the configuration related to Product entity;

		user.yml for the configuration related to User entity;

		basic.yml for the rest of the configuration, including any entity
different from Product and User.

First, create a new app/config/easyadmin/ directory to store the new files so
they don’t mess with the other Symfony configuration files. Then, create the
four files with these contents:

app/config/easyadmin/basic.yml
easy_admin:
 site_name: '...'
 # ...

app/config/easyadmin/design.yml
easy_admin:
 design:
 # ...

app/config/easyadmin/product.yml
easy_admin:
 entities:
 Product:
 # ...

app/config/easyadmin/user.yml
easy_admin:
 entities:
 User:
 # ...

Beware that each configuration file must define its contents under the easy_admin
key. Otherwise, Symfony won’t be able to merge the different configurations.

The last step is to import those files from any configuration file loaded for
Symfony, usually config.yml:

Before Symfony 2.8
app/config/config.yml
imports:
 - { resource: easyadmin/basic.yml }
 - { resource: easyadmin/design.yml }
 - { resource: easyadmin/product.yml }
 - { resource: easyadmin/user.yml }

Symfony 2.8 and higher
app/config/config.yml
imports:
 - { resource: easyadmin/ }

The imported files can define any number of EasyAdmin configuration options. You
can even define the same option in several files and Symfony will take care of
merging all values (the last one always wins).

Importing EasyAdmin Configuration from Different Bundles

This technique is also useful when your entities are scattered across different
bundles. You can define their backend configuration separately in each bundle
and then load those files through the service configuration loading mechanism.

Consider an application which contains a ProductBundle bundle where the Product
entity is defined. First, create the configuration file for that entity:

src/ProductBundle/Resources/config/product.yml
easy_admin:
 entities:
 Product:
 # ...

Then, import the product.yml file from the DependencyInjection extension defined
by the bundle:

namespace ProductBundle\DependencyInjection;

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;

// ...
public function load(array $configs, ContainerBuilder $container)
{
 // ...

 $loader = new YamlFileLoader($container, new FileLocator(__DIR__.'/../Resources/config'));
 $loader->load('product.yml');
}

Alternatively, if you don’t want to use a DependencyInjection extension, you can
import the bundle’s file from the main Symfony configuration file:

imports:
 # ...
 - { resource: "@ProductBundle/Resources/config/product.yml" }

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/tutorials/wysiwyg-editor.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Use a WYSIWYG Editor

EasyAdmin uses a <textarea> form field to render long text properties:

[image: Default textarea for text elements]

However, sometimes you need to provide to your users a rich editor, commonly
named WYSIWYG editor. Although EasyAdmin doesn’t provide any built-in rich text
editor, you can integrate one very easily.

Installing the Rich Text Editor

The recommended WYSIWYG editor is called CKEditor [http://ckeditor.com/] and
you can integrate it thanks to the IvoryCKEditorBundle [https://github.com/egeloen/IvoryCKEditorBundle]:

		Install the bundle:

$ composer require egeloen/ckeditor-bundle

		Enable the bundle:

// app/AppKernel.php
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 return array(
 // ...
 new Ivory\CKEditorBundle\IvoryCKEditorBundle(),
);
 }
}

		Install the JavaScript/CSS files used by the bundle:

Symfony 2
php app/console assets:install --symlink

Symfony 3
php bin/console assets:install --symlink

Using the Rich Text Editor

IvoryCKEditorBundle provides a new form type called ckeditor. Just set the
type option of any property to this value to display its contents using a
rich text editor:

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 # ...
 - { property: 'description', type: 'ckeditor' }

TIP

Even if your application uses Symfony 3 there is no need to use the FQCN of
the CKEditorType (type: 'Ivory\CKEditorBundle\Form\Type\CKEditorType')
because EasyAdmin supports the short types for some popular third-party bundles.

Now, the description property will be rendered as a rich text editor and not as
a simple <textarea>:

[image: Default WYSIWYG editor]

Customizing the Rich Text Editor

EasyAdmin tweaks some CKEditor settings to improve the user experience. In case
you need further customization, configure the editor globally in your Symfony
application under the ivory_ck_editor option. For example:

app/config/config.yml
ivory_ck_editor:
 input_sync: true
 default_config: base_config
 configs:
 base_config:
 toolbar:
 - { name: "styles", items: ['Bold', 'Italic', 'BulletedList', 'Link'] }

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 # ...
 - { property: 'description', type: 'ckeditor' }

In this example, the toolbar is simplified to display just a few common options:

[image: Simple WYSIWYG editor]

Alternatively, you can also define the editor options in the type_options
setting of the property:

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 # ...
 - { property: 'description', type: 'ckeditor', type_options: { 'config': { 'toolbar': [{ name: 'styles', items: ['Bold', 'Italic', 'BulletedList', 'Link'] }] } } }

This inline configuration is very hard to maintain, so it’s recommended to use
the global configuration instead. You can even combine both to define the toolbars
globally and then select the toolbar to use in each property:

app/config/config.yml
ivory_ck_editor:
 input_sync: true
 default_config: simple_config
 configs:
 simple_config:
 toolbar:
 # ...
 advanced_config:
 toolbar:
 # ...

easy_admin:
 entities:
 Product:
 # ...
 form:
 fields:
 # ...
 - { property: 'excerpt', type: 'ckeditor',
 type_options: { config_name: 'simple_config' } }
 - { property: 'description', type: 'ckeditor',
 type_options: { config_name: 'advanced_config' } }

Check out the original CKEditor documentation to get
[its full list of configuration options] (http://docs.cksource.com/ckeditor_api/symbols/CKEDITOR.config.html).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

 ❮ NOTE ❯ This bundle releases new versions on a regular basis. Make sure
to update your dependencies frequently to get the latest version.
Check out the changelog [https://github.com/javiereguiluz/EasyAdminBundle/releases]
to learn about the new features and read the UPGRADE guide [https://github.com/javiereguiluz/EasyAdminBundle/blob/master/UPGRADE.md].

EasyAdmin

[image: Build Status] [https://travis-ci.org/javiereguiluz/EasyAdminBundle]
[image: SensioLabsInsight] [https://insight.sensiolabs.com/projects/a3bfb8d9-7b2d-47ab-a95f-382af395bd51]
[image: Coverage Status] [https://coveralls.io/r/javiereguiluz/EasyAdminBundle?branch=master]
[image: Symfony] [https://symfony.com/]

[image: Symfony Backends created with EasyAdmin]

EasyAdmin lets you create administration backends for Symfony applications
with unprecedented simplicity.

Features

		CRUD operations on Doctrine entities (create, edit, list, delete).

		Full-text search, pagination and column sorting.

		Fully responsive design (smartphones, tablets and desktops).

		Supports Symfony 2.x and 3.x.

		Translated into tens of languages.

		Fast, simple and smart where appropriate.

Requirements

		Symfony 2.3+ or 3.x applications (Silex not supported).

		Doctrine ORM entities (Doctrine ODM and Propel not supported).

		Entities with composite keys or using inheritance are not supported.

Documentation

Getting Started Guide

The Getting Started Guide explains how to
install the bundle and how to create your first backend. This guide is a must-
read before using EasyAdmin.

The Book

		Chapter 1 - Basic configuration

		Chapter 2 - Design configuration

		Chapter 3 - list, search and show views configuration

		Chapter 4 - edit and new views configuration

		Chapter 5 - Actions configuration

		Chapter 6 - Menu configuration

		Chapter 7 - Creating complex and dynamic backends

		Chapter 8 - About this project

		Appendix - Full configuration reference

Tutorials

		How to translate the backend

		How to define custom actions

		How to define custom options for entity properties

		How to manage configuration for complex backends

		Tips and tricks

Third-party bundles/services integrations

		How to upload files and images with VichUploaderBundle

		How to integrate FOSUserBundle to manage users

		How to use a WYSIWYG editor with IvoryCKEditorBundle

		How To integrate FOSRestBundle and EasyAdmin

❮ NOTE ❯ you are reading the documentation of the bundle’s development
version. You can also [read the documentation of the latest stable version ➜]
(https://github.com/javiereguiluz/EasyAdminBundle/tree/v1.16.3/).

Demo Application

easy-admin-demo [https://github.com/javiereguiluz/easy-admin-demo] is a complete
Symfony application created to showcase EasyAdmin features.

Installation

Step 1: Download the Bundle

$ composer require javiereguiluz/easyadmin-bundle

This command requires you to have Composer installed globally, as explained
in the Composer documentation [https://getcomposer.org/doc/00-intro.md].

Step 2: Enable the Bundle

<?php
// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 $bundles = array(
 // ...
 new JavierEguiluz\Bundle\EasyAdminBundle\EasyAdminBundle(),
);
 }

 // ...
}

Step 3: Load the Routes of the Bundle

app/config/routing.yml
easy_admin_bundle:
 resource: "@EasyAdminBundle/Controller/"
 type: annotation
 prefix: /admin

...

Step 4: Prepare the Web Assets of the Bundle

Symfony 2
php app/console assets:install --symlink

Symfony 3
php bin/console assets:install --symlink

That’s it! Now everything is ready to create your first admin backend.

Your First Backend

Creating your first backend will take you less than 30 seconds. Let’s suppose
that your Symfony application defines three Doctrine ORM entities called
Product, Category and User.

Open the app/config/config.yml file and add the following configuration:

app/config/config.yml
easy_admin:
 entities:
 - AppBundle\Entity\Product
 - AppBundle\Entity\Category
 - AppBundle\Entity\User

Congratulations! You’ve just created your first fully-featured backend!
Browse the /admin URL in your Symfony application and you’ll get access to
the admin backend:

[image: Default EasyAdmin Backend interface]

Keep reading the rest of the documentation to learn how to create complex backends.

License

This software is published under the MIT License

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-search-view.png
Easy Admin

Products

Categories

Users

Purchases

Purchase Items

3 results found

n Enabled Name

7) vo | Product Dapibus Dictumst
19 ves Product Dapibus Platea
2 ves Product Diam Dapibus

303

Price

77.99

78.00

13.39

dapibus
Image Created at
- 9/Jan /2016

9/Jan/2016

9/Jan/2016

& Anonymous User

(CRETEIINE Add Product

Tags

monitors, wearables, hardware

electronics

toys

«First < Previous

Actions

Edit Delete

Edit Delete

Edit Delete

Next> Last»

Resources/doc/tutorials/fosrestbundle-integration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How To Integrate FOSRestBundle and EasyAdmin

FOSRestBundle [https://github.com/FriendsOfSymfony/FOSRestBundle] provides various tools to rapidly develop RESTful APIs in
Symfony applications. EasyAdmin doesn’t integrate with FOSRestBundle features in
any way, but there are some options that you may need to configure to avoid
errors in backend URLs.

Format Listener

This listener provided by FOSRestBundle determines the best format for the
request based on the HTTP Accept header included in the request and some format
priority configuration.

If you have enabled this format listener, disable it for the backend routes:

app/config/config.yml
fos_rest:
 format_listener:
 enabled: true
 rules:
 # ... previous rules declarations
 - { path: '^/admin', stop: true } # <-- add this line

When using FOSRestBundle 2.0, you may also need to configure the “zones” as
explained in this chapter [http://symfony.com/doc/master/bundles/FOSRestBundle/3-listener-support.html] of the FOSRestBundle documentation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ROADMAP.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

ROADMAP

Short-Term Roadmap

Our short-term roadmap of features that will be added soon is available in
the list of project issues [https://github.com/javiereguiluz/EasyAdminBundle/issues].

Long-Term Roadmap

These are the features that we’ll implement in the future when we find a
generic and simple way to do it:

		[DONE] Complete Doctrine association support (all kinds of associations: one-to-
one, including self-referencing, one-to-many, many-to-one and many-to-many)

		[DONE] Allow to configure the main color used in the backend (to match the
company’s brand color)

		[DONE] Nested main menu items (two-level only)

		Support for exporting the list or search results to CSV and/or Excel

		[DONE] Full theme support (not just changing the main color of the backend)

		FOSUserBundle integration

		Form field grouping in tabs

		[DONE] Custom actions for list/search, edit, show and new views.

		Support for fine-grained security control over views and/or entity actions
(instead, use Symfony’s built-in security features, such as voters or
ACLs).

		Batch actions to apply the same action to more than one list record
simultaneously.

		Embedding forms to create entities while editing or creating other entities.

Features That We’ll Never Implement

Some of the following features may be included in EasyAdmin sometime in the
future if enough users ask for them and if we’ve completed all the basic features
first. However, it’s safe to consider that they’ll never be implemented:

		Dashboards for backend homepages (with widgets, charts, etc.)

		Support for Symfony-based applications built without the Symfony full-
stack framework (Silex, Laravel, custom Symfony developments, etc.)

		Support for anything different from Doctrine ORM (Propel, Doctrine ODM,
etc.)

		Breadcrumbs that show the hierarchical navigation to the given page.

		CMS-like features.

		Assetic or frontend-tools-based (gulp, grunt, bower) asset processing.

		Support for AngularJS or any other JavaScript-based client-side technology.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-form-divider.png
ACME Backend & john.smith

Ll Create User

D*
=]
A
Name *
8
(2}
Surname *
Email
Phone number *

LICENSE.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

 The MIT License (MIT)

Copyright (c) 2015-2016 Javier Eguiluz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/simple-wysiwyg.png
‘Sed varius a risus eget aliquam. Ut suscipit posuere justo at vulputate. Nunc et feugiat lectus. Ut
eleifend mauris et risus ultrices egestas. Donec vel elitdui. Pellentesque vitae veit ex.

Resources/doc/tutorials/custom-actions.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Define Custom Actions

One of the most powerful features of EasyAdmin is the possibility of defining
your own actions. In addition to the built-in edit, list, new, search,
delete and show actions, you can create any number of custom actions and
display them in any view (edit, list, new, search, show).

There are two types of custom actions:

		Method based actions, which execute a method of the AdminController
class. This is the default type in EasyAdmin;

		Route based actions, which execute the controller associated with the
given route (and which can be defined anywhere in your application).

Method Based Actions

This is the most simple type of action and it just executes a method of the
AdminController associated with the backend. Suppose that in your backend, one
of the most common tasks is to restock a product adding 100 units to its current
stock. Instead of editing a product, manually adding those 100 units and saving
the changes, you can display a new Restock action in the list view.

First, define a new restock action using the actions option:

easy_admin:
 entities:
 Product:
 list:
 actions: ['restock']
 # ...

If you reload the backend, you’ll see a new Restock action displayed as a link
in the Actions column of the Product entity listing. However, if you click
on any of the Restock links, you’ll see an error because the restockAction()
method is not defined in the AdminController.

Therefore, the next step is to create a custom AdminController in your
Symfony application and to make it extend from the base AdminController
provided by EasyAdmin. This process will take you less than a minute and it’s
explained in detail in the Customization Based on Controller Methods section
in the Customization Based on Controller Methods.

Now you can define the restockAction() method in your own controller:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

// ...

class AdminController extends BaseAdminController
{
 // ...

 public function restockAction()
 {
 // controllers extending the base AdminController can access to the
 // following variables:
 // $this->request, stores the current request
 // $this->em, stores the Entity Manager for this Doctrine entity

 // change the properties of the given entity and save the changes
 $id = $this->request->query->get('id');
 $entity = $this->em->getRepository('AppBundle:Product')->find($id);
 $entity->setStock(100 + $entity->getStock());
 $this->em->flush();

 // redirect to the 'list' view of the given entity
 return $this->redirectToRoute('easyadmin', array(
 'action' => 'list',
 'entity' => $this->request->query->get('entity'),
));

 // redirect to the 'edit' view of the given entity item
 return $this->redirectToRoute('easyadmin', array(
 'action' => 'edit',
 'id' => $id,
 'entity' => $this->request->query->get('entity'),
));
 }
}

And that’s it! Click again on the Restock action and everything will work as
expected. Custom actions can define any of the properties available for the
built-in actions:

easy_admin:
 entities:
 Product:
 list:
 actions:
 - { name: 'restock', icon: 'plus-square' }
 # ...

The inheritance of actions is also applied to custom actions:

easy_admin:
 list:
 # show the 'restock' action for all entities except those who remove it
 actions:
 - { name: 'restock', icon: 'plus-square' }

 entities:
 Product:
 # ...
 User:
 list:
 actions: ['-restock']
 # ...

Route Based Actions

This type of actions allows you to execute any controller defined in your
existing application, without the need to define a custom AdminController. In
this case, the name of the action is treated as the route name and you must
add a type option with the route value:

easy_admin:
 entities:
 Product:
 list:
 actions:
 - { name: 'product_restock', type: 'route' }
 # ...

Route based actions are displayed as regular links or buttons, but they don’t
link to the usual easyadmin route but to the route configured by the action.
In addition, the route is passed two parameters in the query string: entity
(the name of the entity) and, when available, the id of the related entity.

Following the same example as above, the controller of this route based action
would look as follows:

// src/AppBundle/Controller/ProductController.php
namespace AppBundle\Controller;

// ...
use Symfony\Component\HttpFoundation\Request;

class ProductController extends Controller
{
 // ...

 /**
 * @Route(path = "/admin/product/restock", name = "product_restock")
 * @Security("has_role('ROLE_ADMIN')")
 */
 public function restockAction(Request $request)
 {
 // change the properties of the given entity and save the changes
 $em = $this->getDoctrine()->getManager();
 $repository = $this->getDoctrine()->getRepository('AppBundle:Product');

 $id = $request->query->get('id');
 $entity = $repository->find($id);
 $entity->setStock(100 + $entity->getStock());
 $em->flush();

 // redirect to the 'list' view of the given entity
 return $this->redirectToRoute('easyadmin', array(
 'action' => 'list',
 'entity' => $this->request->query->get('entity'),
));

 // redirect to the 'edit' view of the given entity item
 return $this->redirectToRoute('easyadmin', array(
 'action' => 'edit',
 'id' => $id,
 'entity' => $this->request->query->get('entity'),
));
 }
}

Similarly to method based actions, you can configure any option for these
actions (icons, labels, etc.) and you can also leverage the action inheritance
mechanism.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

UPGRADE.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

EasyAdmin Upgrade Guide

This document describes the backwards incompatible changes introduced by each
EasyAdminBundle version and the needed changes to be made before upgrading to
the next version.

Upgrade to 2.0.0 (XX/XXX/201X)

		The route used to generate every backend URL is now called easyadmin instead
of admin. This change has been introduce to prevent collisions with your
existing backend routes, where is common to use the admin route name.

In order to upgrade, you just need to replace admin by easyadmin in all
path(), generateUrl() and redirectToRoute() calls.

Upgrade to 1.15.X (XX/October/2016)

		The template fragments used to render each property value (e.g.
field_array.html.twig, label_null.html.twig, etc.) now receive two new
variables called entity_config and backend_config, which are useful for
advanced backends.

		The image fields and the VichUploader files and images now are rendered
using the asset() Twig function. Depending on your configuration, you may
need to change or remove EasyAdmin’s base_path option and define the proper
base path using Symfony’s asset configuration.

Upgrade to 1.13.0 (11/May/2016)

		The configuration of the backend is no longer processed in a compiler pass
but generated with a cache warmer. This is done to avoid issues with Doctrine
and Twig services, which are needed to process the configuration but they are
not fully available during the container compilation.

		In the development environment, the backend config is fully processed for each
request, so you might notice a slight performance impact. In exchange, you
won’t suffer any cache problem or any outdated config problem. In production
the backend config is fully processed in the cache warmer or, if any problem
happened, during the first request. Then the config is cached in the file
system and reused in the following requests.

		The easyadmin.configurator service has been renamed to easyadmin.config.manager

		The easyadmin.config container parameter no longer contains the fully
processed backend configuration. Now it only contains the configuration that
the developer defined in their YAML files. The equivalent way to get the
fully processed backend config is to use the easyadmin.config.manager
service:

// Before
$backendConfig = $this->getParameter(‘easyadmin.config’);

// After
$backendConfig = $this->get(‘easyadmin.config.manager’)->getBackendConfig();

Upgrade to 1.12.6 (15/April/2016)

		Web assets are now combined and minified to improve frontend performance. In
previous versions, CSS and JS were included by loading lots of small files.
Starting from this version, the backend only loads one CSS file (called
easyadmin-all.min.css) and one JS file (called easyadmin-all.min.js).
The individual CSS/JS files are still available in case you override the
backend design and want to pick some of them individually.
The new CSS/JSS files should be available in your application after upgrading
this version bundle. If you have any problem, install the new assets executing
the assets:install --symlinks console command.

Upgrade to 1.12.5 (03/March/2016)

		The renderCssAction() method of the AdminController has been deprecated and
its associated route @Route("/_css/easyadmin.css", name="_easyadmin_render_css")
has been removed. The custom CSS now is preprocessed during container compilation
and the result is stored in the _internal.custom_css option of the processed
backend configuration.

Upgrade to 1.11.6 (26/February/2016)

		findBy() and createSearchQueryBuilder() methods now receive two new
parameters called $sortField and $sortDirection to allow sorting the
search results.

Upgrade to 1.9.5 (13/December/2015)

		The isReadable and isWritable options are no longer available for each
property metadata. These options were needed when we introspected the getters
and setters of the properties ourselves. We now use the Symfony PropertyAccessor
component to get and set values for entity properties.

		The Configurator::introspectGettersAndSetters() method, the
Reflection/ClassPropertyReflector class and the easyadmin.property_reflector
service have been deleted and replaced by the use of the PropertyAccessor
class, its getValue() and setValue() methods and the @property_accessor
service.

Upgrade to 1.9.2 (24/November/2015)

		The render404error() utility method has been removed from AdminController.
This method was no longer used since we started throwing custom exceptions
when an error occurs.

		The ajaxEdit() method of the AdminController has been removed. This method
had nothing to do with editing an entity via Ajax. It was just used to toggle
the value of boolean properties. It has been replaced by a private method
called updateEntityProperty().

Upgrade to 1.8.0 (8/November/2015)

		The options that define if a entity property is readable and/or writable have
changed their name to match the names used by Symfony:

// Before
$propertyMetadata['canBeGet'];
$propertyMetadata['canBeSet'];

// After
$propertyMetadata['isReadable'];
$propertyMetadata['isWritable'];

This only affects you if you make a very advance use of the bundle and override
lots of its functionalities.

		The form.html.twig template has been removed and therefore, you cannot define
the easy_admin.design.templates.form to override it by your own template.
If you want to customize the forms of the backend, use a proper Symfony form
theme and enable it in the easy_admin.design.form_theme option.

Upgrade to 1.5.5 (22/June/2015)

In order to improve the consistency of the backend design, all CSS class names
have been updated to use dashes instead of underscores, to match the syntax
used by Bootstrap classes. This means that field_date is now field-date,
theme_boostrap... is now theme-bootstrap..., etc.

Moreover, the global css class applied to the <body> element of each view
has changed:

| View | OLD <body> CSS class | NEW <body> CSS class
| —— | ————————– | —————————————
| edit | admin edit <entity name> | easyadmin edit edit-<entity name>
| list | admin list <entity name> | easyadmin list list-<entity name>
| new | admin new <entity name> | easyadmin new new-<entity name>
| show | admin show <entity name> | easyadmin show show-<entity name>

All these changes only affect you if your backend uses a custom stylesheet.

Upgrade to 1.5.3 (26/May/2015)

The class option has been renamed to css_class.

Before:

easy_admin:
 actions:
 # ...
 - { name: 'edit', class: 'danger' }
 entities:
 # ...
 fields:
 - { property: 'id', class: 'col-md-12' }

After:

easy_admin:
 actions:
 # ...
 - { name: 'edit', css_class: 'danger' }
 entities:
 # ...
 fields:
 - { property: 'id', css_class: 'col-md-12' }

Upgrade to 1.5.0 (17/May/2015)

Some methods used to tweak AdminController behaviour have changed

// Before
protected function prepareNewEntityForPersist($entity) { ... }

// After
protected function prePersistEntity($entity) { ... }

// You can also create custom methods for each entity
protected function prePersistUserEntity($entity) { ... }
protected function prePersistProductEntity($entity) { ... }
// ...

// Before
protected function prepareEditEntityForPersist($entity) { ... }

// After
protected function preUpdateEntity($entity) { ... }

// You can also create custom methods for each entity
protected function preUpdateUserEntity($entity) { ... }
protected function preUpdateProductEntity($entity) { ... }
// ...

New strategy to determine the entity name

The strategy used to determine the entity name has change in preparation for
some planned features.

Previously, the entity name was infered from the entity class name. Now the
entity name is the value used as the YAML key of the configuration file:

Before (label = name = TestEntity)
easy_admin:
 entities:
 MyEntity: 'AppBundle\Entity\TestEntity'

After (label = name = MyEntity)
easy_admin:
 entities:
 MyEntity: 'AppBundle\Entity\TestEntity'

This change probably doesn’t affect your backend, because so far the entity
name is mostly an internal thing used as part as the URL of the backend pages.
In the next version of the bundle this value will be used as some PHP method
name. Therefore, developer must have absolute control over the entity name and
EasyAdmin should not autogenerate it.

Entity names no longer can include unsafe characters

Previously, the YAML key of the configuration file was used to set the entity
label for the entities which didn’t define the label option. This label is
used in some buttons, the main menu and the page title. Therefore, you could
use any character for the entity name, including white spaces.

Now entity names can only contain numbers, characters and underscores, and the
first character cannot be a number. This allows to use the entity name as part
of the name of some PHP methods. In order to use a fancy entity label, just
define the label option:

BEFORE
this will throw an exception in the new bundle version
easy_admin:
 entities:
 'My Fancy Entity!': 'AppBundle\Entity\TestEntity'

AFTER
easy_admin:
 entities:
 MyEntity:
 class: 'AppBundle\Entity\TestEntity'
 label: 'My Fancy Entity!'

Changed variables names in twig views

The former _entity variable was used to retrieve the current entity configuration.
This variable has been renamed to _entity_config for convenience and readability reasons.

The old item variable was used to carry the currently created/edited entity.
This variable has been renamed to entity for better understandability.

Be sure that you did not override these variables, if so, you just have to change the name.

Upgrade to 1.4.0 (1/May/2015)

These changes affect you only if you have customized any of the following
templates in your backend:

		form/entity_form.html.twig template has been renamed to form.html.twig

		_list_paginator.html.twig template has been renamed to _paginator.html.twig

		_flashes.html.twig template has been removed because it wasn’t used in any other template

Full version details: https://github.com/javiereguiluz/EasyAdminBundle/releases/tag/v1.4.0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-listing-actions-label-and-icon.png
Product

n * Enabled

100

* Name
Product Velit Donec

99

m
s (I3

Product Eleifend Libero

Product Donec Platea

< Price

7.99

25.99

70.29

< Created at

9/Jan /2016

9/Jan /2016

9/Jan /2016

< Tags

electronics, toys

music, TV & video, GPS

electronics, software, laptops

Q Search Add Product

Actions
Edit X Delete
Edit X Delete

Edit X Delete

Resources/doc/tutorials/custom-property-options.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to Define Custom Options for Entity Properties

This article explains how to define custom options for any entity property and
how to use those options in the list, search or show views. This technique
is useful for complex or highly customized backends, but it should be used
sparingly because it could require you some maintenance work when new versions
of this bundle are released.

Default Property Options

Properties included in the fields option of any entity can define several
options (property, label, template, type, help and css_class):

app/config.yml
easy_admin:
 entities:
 User:
 class: AppBundle\Entity\User
 list:
 fields:
 - { property: 'email', label: 'Contact' }
 - { property: 'biography', help: 'Markdown allowed' }
 # ...

Custom Property Options

NOTE

After the publication of this article, EasyAdmin added a new configuration
option called translation_domain which defines the domain used when
translating contents (default value = messages).

Adding custom options is as simple as defining their names and values in each
property configuration. Imagine that you want to translate the contents of a
property called name in the list view. To do so, define a custom option
called trans which indicates if the property should be translated and another
option called domain which defines the name of the translation domain to use:

app/config.yml
Product:
 class: AppBundle\Entity\Product
 label: 'Products'
 list:
 fields:
 - id
 - { property: 'name', trans: true, domain: 'messages' }
 # ...

Using Custom Property Options in Templates

Property templates receive a parameter called field_options which is an array
that contains all the options defined in the configuration file for that
property. If you add custom options, they will also be available in that
field_options parameter. This allows you to add custom logic to templates very
easily.

Considering that the name property is of type string, override the built-in
field_string.html.twig template to add support for the trans and domain
options:

{# app/Resources/views/easy_admin/field_string.html.twig #}

{% if field_options.trans|default(false) %}
 {# translate fields defined as "translatable" #}
 {{ value|trans({}, field_options.domain|default('messages')) }}
{% else %}
 {# if not translatable, simply include the default template #}
 {{ include('@EasyAdmin/default/field_string.html.twig') }}
{% endif %}

If the custom logic is too complex, it may be better to render the property with
its own custom template to not mess the default templates too much. In the
following example, the backend wants to display a collection of tags with the
colors configured for the property.

Since this business logic is too specific, it’s better to not reuse the
corresponding default template. The solution is to define a custom template just
for this property and make use of the label_colors custom option:

app/config.yml
easy_admin:
 entities:
 Product:
 class: AppBundle\Entity\Product
 list:
 fields:
 # ...
 - { property: 'tags', template: 'tag_collection.html.twig',
 label_colors: ['primary', 'success', 'info'] }

The custom tag_collection.html.twig template would look as follows:

{# app/Resources/views/easy_admin/tag_collection.html.twig #}

{% set colors = field_options.label_colors|default(['primary']) %}

{% for tag in value %}
 {{ tag }}
{% endfor %}

And this property would be rendered in the list view as follows:

[image: Default listing interface]

Custom Entity Options

This very same technique can be applied to entities too. Since the configuration
options are not constrained, you can add as many custom entity properties as
needed. Just define their name and value to use them everywhere on the backend:

app/config.yml
easy_admin:
 entities:
 User:
 class: AppBundle\Entity\User
 export_path: '%kernel.root_dir/../var/export/user'
 password_encoding: { algorithm: 'bcrypt', cost: 12 }
 # ...

In the above example, the backend defines the export_path and password_encoding
custom options, which will be included by EasyAdmin in the processed User
configuration.

Instead of defining the custom options at the same level of the built-in options,
it’s better to define them under a custom parent option. This eases the maintenance
of your custom options and reduces the risk of option name collisions. You can
even use the name of your project as the name of the parent option:

app/config.yml
easy_admin:
 entities:
 User:
 class: AppBundle\Entity\User
 acme_project:
 export_path: '%kernel.root_dir/../var/export/user'
 password_encoding: { algorithm: 'bcrypt', cost: 12 }
 # ...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-design-color-scheme-light.png
@rrosuct x

Easy Admin =

Categories
~ D

Users
100

99
98
97
96
95
94
93
92
91

1-100f 100

Brocucts Product

Enabled

= C' i [} easyadmin.dev/admin/?entity=Product&action=list

Name

Product Velit Donec

Product Eleifend Libero

Product Donec Platea

Product Posuere Donec

Product Egestas Dictumst

Product Dapibus Gommodo

Product Egestas Suscipit

Product Mauris Ipsum

Product Suscipit Lorem

Product Vulputate Eleifend

Price

7.99

25.99

70.29

28.00

35.29

5.99

28.99

26.29

36.29

54.99

Image

Created at

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

9/Jan/2016

bs

& Anonymous User

(CRTEINE Add Product

Tags Actions
electronics, toys Edit Delete
music, TV & video, GPS Edit Delete
electronics, software, laptops Edit Delete
electronics, books, music Edit Delete
hardware, toys, TV & video Edit Delete
wearables, GPS, monitors Edit Delete
movies, printers Edit Delete
music, hardware, monitors Edit Delete
software, laptops Edit Delete
TV & video, GPS Edit Delete

Next> Last»

_images/easyadmin-boolean-field-toggle-error.gif
n Enabled

100 N
S - |

_images/easyadmin-design-brand-color.png
Products. Qe

Products. Q searcn

Products Q search

& Anonymous User

[CEENE Add Product

Easy Admin & Anonymous User

Product a sou

Easy Admin —

Products Product Q search

Categori
Name Price Image Created at Tags Actions

100 ct Vet Donec 9/Jan/2016 electronics, toys Edit
Purchases
Purchase I 9 Product Eleifend Livero 2590 9/Jan/2016 music, TV & video, GPS Edit
9 Product Donec Platea 029 9/Jan /2016 electroni Edit
97 Product Posuere Donec 28,00 9/Jan 12016 electronics, books, music: Edit
9 Product Egestas Dictumst 3520 9/Jan 12016 hardware, toys, TV & video Edit
Product Dapibus Commodo 599 9/Jan /2016 wearables, GPS, moniors Edit
9 Product Egestas Suschit 2899 9/Jan 12016 movies, printers Edit
9 Product Mauris Ipsum 2629 9/Jan /2016 music, hardware, moniors Edit
9 Product Suscipit Lorem 3629 9/Jan /2016 Software, lapt Edit
91 Product Vulputate Eleflend 5499 9/Jan /2016 TV & video, GPS Eait
1-1001100

Next> Last>

_images/easyadmin-list-view.png
Easy Admin & Anonymous User

© Products Product Q search

© Categories
Enabled * Name Price Image Created at Tags Actions
© Users R
100 YES Product Velit Donec 7.99 b 9/Jan /2016 electronics, toys Edit
Purchases
g
Purchase Items 99 Product Eleifend Libero 25.99 Lz. 9/Jan /2016 music, TV & video, GPS Edit
% Product Donec Platea 70.29 ld 9/Jan/2016 electronics, software, laptops Edit
97 B Product Posuere Donec 28.00 - 9/Jan/2016 electronics, books, music Edit
9% Product Egestas Dictumst 35.29 - 9/Jan /2016 hardware, toys, TV & video Edit
95 B Product Dapibus Commodo 599 E 9/Jan/2016 wearables, GPS, monitors Edit
% = Product Egestas Suscipit 28.99 Lﬁ 4 9/Jan /2016 movies, printers Edit
93 X Product Mauris ipsum 26.29 m 9/Jan/2016 music, hardware, monitors Edit
%2 =X Product Suscipit Lorem 36.29 N 9/Jan/2016 software, laptops Edit
9 B Product vuputate Eteifend 54.99 g 9/Jan/2016 TV &video, GPS Edit
1-100f 100

«First < Previous Next> | Last»

_images/easyadmin-show-view.png
Easy Admin & Anonymous User

© Products Product (#99)
© Categories D %
© Users Name Product Elelfend Libero

Purchases

EAN 6389216636307

Purchase Items

Description Phasellus id porta orci. Nulla porta lobortis ligula vel egestas. Ut suscipit posuere justo at vulputate. Aliquam sodales, odio id eleifend
tristique, urna nis! sollicitudin urna, id varius orci quam id turpis. Pellentesque et sapien pulvinar, consectetur eros ac, vehicula odio. Nam
porta porta augue. Mauris dapibus, fisus quis suscipit vulputate, eros diam egestas libero, eu vulputate eros eros eu risus. Nunc et feugiat
lectus.

Image

Price 2599
Features
Categories. (0]
Tags
« music

« TV &video

- GPS

Enabled m

Created at January 9, 2016 15:55

@ Delete Back to listing

Resources/doc/tutorials/fosuserbundle-integration.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How To Integrate FOSUserBundle To Manage Users

FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle] is a popular Symfony bundle which simplifies the management
of users in Symfony applications. This article explains how to better integrate
it with EasyAdmin to manage users’ information. The article assumes that you
have installed FOSUserBundle and have created a user entity as explained in
its documentation [http://symfony.com/doc/current/bundles/FOSUserBundle/index.html].

Creating New Users

FOSUserBundle defines a user manager [http://symfony.com/doc/current/bundles/FOSUserBundle/user_manager.html] to handle all operations on user
instances, such as creating and editing users. This manager, which is accessed
through the fos_user.user_manager service, makes the bundle “agnostic” to
where the users are stored and it’s a good practice to use it.

Before using this manager, create your own AdminController if you haven’t
done it already so you can modify the behavior of the new action. Then,
override the createNewUserEntity() and prePersistUserEntity() methods to
override the way users are created and persisted:

// src/AppBundle/Controller/AdminController.php
namespace AppBundle\Controller;

use JavierEguiluz\Bundle\EasyAdminBundle\Controller\AdminController as BaseAdminController;

class AdminController extends BaseAdminController
{
 public function createNewUserEntity()
 {
 return $this->get('fos_user.user_manager')->createUser();
 }

 public function prePersistUserEntity($user)
 {
 $this->get('fos_user.user_manager')->updateUser($user, false);
 }
}

The false value of the second argument of updateUser() tells FOSUserBundle
to not save the changes (to not flush the UnitOfWork) at that moment and to let
Doctrine take care of saving those changes when needed.

NOTE

If your user entity is not called User, you need to change the above method
names. For example, if the entity is called Customers, the methods to define
are createNewCustomersEntity() and prePersistCustomersEntity().

Editing User Information

FOSUserBundle provides a custom User entity with some predefined properties,
such as email, enabled and lastLogin. You can manage these properties in
the same way you manage any property of any other entity:

easy_admin:
 entities:
 User:
 class: AppBundle\Entity\User
 form:
 fields:
 - username
 - email
 - enabled
 - lastLogin
 # if administrators are allowed to edit users' passwords and roles, add this:
 - { property: 'plainPassword', type: 'text', type_options: { required: false } }
 - { property: 'roles', type: 'choice', type_options: { multiple: true, choices: { 'ROLE_USER': 'ROLE_USER', 'ROLE_ADMIN': 'ROLE_ADMIN' } } }

However, it’s recommended to save changes using FOSUserBundle’s user manager.
Therefore, open your AdminController and add the following method:

class AdminController extends BaseAdminController
{
 // ...

 public function preUpdateUserEntity($user)
 {
 $this->get('fos_user.user_manager')->updateUser($user, false);
 }
}

NOTE

If your user entity is not called User, you need to change the above method
name. For example, if the entity is called Customers, the method to define
is preUpdateCustomersEntity().

Using Different Validation when Creating or Editing the User

A common need when managing users is to apply different validation rules when
creating or editing them. In the following example, the form applies different
validation groups for each action and the password is mandatory only when the
user is created:

easy_admin:
 entities:
 User:
 class: AppBundle\Entity\User
 edit:
 fields:
 # ...
 - { property: 'plainPassword', type_options: { required: false} }
 # ...
 form_options: { validation_groups: ['Profile'] }
 new:
 fields:
 # ...
 - { property: 'plainPassword', type_options: { required: true} }
 # ...
 form_options: { validation_groups: ['Registration'] }

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/easyadmin-form-horizontal.png
Easy Admin = & Anonymous User

© Products Create Product
© Categories Name *
© Users
Price * o
Purchases
EAN *
Purchase Iltems © EAN-13 valid code. Leave empty if unknown.
Image file | Selecsinar aenivo | Ningln archivo seleccionado
Features *
Add a new item
Categories.

~) Enabled

Description* (B | § o @ & [Fuente HTML

Createdat* |Jan % 15 4 2016 %) 15 4 44

_static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

.github/PULL_REQUEST_TEMPLATE.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

 (Note: all your contributions adhere implicitly to the MIT license)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/RELEASE_CHECKLIST.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

How to release a new EasyAdmin version

		Update the value of the EasyAdminBundle::VERSION constant (in the
EasyAdminBundle.php file) to remove the -DEV suffix and prepare the
stable release. Example: change 1.12.6-DEV to 1.12.6

		Update the version number in the README.md link that points to the stable
version documentation. Example: change 1.12.5 to 1.12.6

		Commit and push the two previous changes.

		Execute the Resources/bin/compile_assets.sh script to compile the CSS and
JavaScript assets. If there are any changes, commit and push them.

		Create the tag and sign it. Example: git tag -s v1.12.6 (the tag version is
always prefixed with v, but remove it for the tag comment: 1.12.6).

		Push the tag to GitHub. Example: git push origin v1.12.6

		Prepare the changelog of the new version with the custom changelog Git
command. Example: git changelog v1.12.5 (the version passed to the command
is the previous version used as a reference to list the changes).

		Go to https://github.com/javiereguiluz/EasyAdminBundle/releases and click
on Draft a new release. Select the tag pushed before and paste the
changelog contents.

		Update again the value of the EasyAdminBundle::VERSION constant to start
the development of the next version. Example: change 1.12.6 to 1.12.7-DEV

Resources

The custom changelog Git command used to generate the version changelog can
be defined as a global Git alias:

$ git config --global alias.changelog "!f() { git log $1...$2 --pretty=format:'[%h] %s' --reverse; } ; f"

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

Resources/doc/getting-started.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Getting Started with EasyAdmin

Welcome to the EasyAdmin Project, the new (and simple) admin generator for
Symfony applications. In this guide you’ll learn how to install the bundle and
how to create your first backend.

Installation

Installing EasyAdmin requires you to edit two files and execute two console
commands:

Step 1: Download the Bundle

Open a command console, enter your project directory and execute the
following command to download the latest stable version of this bundle:

$ composer require javiereguiluz/easyadmin-bundle

This command requires you to have Composer installed globally, as explained
in the Composer documentation [https://getcomposer.org/doc/00-intro.md].

Step 2: Enable the Bundle

Then, enable the bundle by adding it to the list of registered bundles in the
app/AppKernel.php file of your project:

<?php
// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 $bundles = array(
 // ...
 new JavierEguiluz\Bundle\EasyAdminBundle\EasyAdminBundle(),
);
 }

 // ...
}

Step 3: Load the Routes of the Bundle

Load the routes of the bundle by adding this configuration at the very beginning
of the app/config/routing.yml file:

app/config/routing.yml
easy_admin_bundle:
 resource: "@EasyAdminBundle/Controller/"
 type: annotation
 prefix: /admin

...

Step 4: Prepare the Web Assets of the Bundle

This bundle uses several CSS, JavaScript and font files to create the backend
interfaces. Execute the following command to make those assets available in your
Symfony application:

Symfony 2
php app/console assets:install --symlink

Symfony 3
php bin/console assets:install --symlink

That’s it! Now everything is ready to create your first admin backend.

Your First Backend

Creating your first backend will take you less than 30 seconds. Let’s suppose
that your Symfony application defines three Doctrine ORM entities called
Product, Category and User.

Open the app/config/config.yml file and add the following configuration:

app/config/config.yml
easy_admin:
 entities:
 - AppBundle\Entity\Product
 - AppBundle\Entity\Category
 - AppBundle\Entity\User

Congratulations! You’ve just created your first fully-featured backend!
Browse the /admin URL in your Symfony application and you’ll get access to
the admin backend:

[image: Default EasyAdmin Backend interface]

Expanded Configuration Format

This simple backend uses the shortcut configuration format. In order to
customize the backend, you must use the extended configuration syntax instead,
which allows to configure lots of options for each entity:

app/config/config.yml
easy_admin:
 entities:
 Customer:
 class: AppBundle\Entity\Customer
 Order:
 class: AppBundle\Entity\Order
 Product:
 class: AppBundle\Entity\Product

Entities are configured as elements under the entities key. The name of the
entities are used as the YAML keys. These names must be unique in the backend
and it’s recommended to use the CamelCase syntax (e.g. BlogPost and not
blog_post or blogPost).

The only required option in this configuration format is called class and
defines the fully qualified class name of the Doctrine entity managed by the
backend.

What’s Next?

		Read the EasyAdmin Documentation to learn everything about its dozens
of features and configuration options.

		Check out the EasyAdmin Demo application [https://github.com/javiereguiluz/easy-admin-demo] to see how to easily create a
backend in a real Symfony application.

		Read the EasyAdmin Tutorials to learn about advanced features and
integrations with third-party bundles, such as VichUploaderBundle and
IvoryCKEditorBundle.

Do you have any question about this bundle? Open an issue [https://github.com/javiereguiluz/EasyAdminBundle/issues] in our official
repository or post a question [http://stackoverflow.com/questions/tagged/symfony2-easyadmin] in StackOverflow.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/ISSUE_TEMPLATE.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

 Please, be as concise as possible in your issue report.

If this is a BUG REPORT:

		Describe what you wanted to do and the wrong result you got.

		Include EasyAdmin version (it’s displayed in the Symfony Debug Toolbar)

		(Optional) Include logs (from Symfony, Apache, etc.) if they are useful.

		(Optional) Include short code samples if you consider them relevant.

		(Optional) Include some screenshots if the error is related to design.

If this is a FEATURE REQUEST:

		Describe the new feature briefly.

		Please, DON’T submit a Pull Request (features must be first approved/rejected).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/CONTRIBUTING.html

 Navigation

 		
 index

 		EasyAdminBundle latest documentation »

Contribution Guidelines

Thank you for considering contributing to this bundle. We welcome any kind of
contribution, no matter if its huge or small, about documentation or code. We
also welcome any kind of developers, from experts to people who just started
working on Open-Source projects.

Requirements

Before your first contribution, make sure you’ll meet these requirements:

		You have a user account on GitHub [https://github.com/].

		You have installed in your computer a working environment to develop PHP
applications.

		You have a basic level of English (code, docs and discussions are in English).

All submitted contributions (both code and documentation) adhere implicitly to
the Open-Source MIT License [https://opensource.org/licenses/MIT].

Proposing New Features

We are determined to maintain the original simple and pragmatic philosophy of
the bundle. This means that we routinely reject any feature that complicates the
code too much or which doesn’t fit in the bundle’s philosophy.

That’s why we strongly recommend you to propose new features by
opening a new issue [https://github.com/javiereguiluz/EasyAdminBundle/issues/new] in the repository to discuss about them
instead of submitting a pull request with the code of the proposed feature.

Reporting Bugs

		Go to the list of EasyAdmin issues [https://github.com/javiereguiluz/EasyAdminBundle/issues?utf8=%E2%9C%93&q=is%3Aissue] and look for any
existing bug similar to yours.

		If the bug hasn’t been reported yet, create a new issue [https://github.com/javiereguiluz/EasyAdminBundle/issues/new] and
provide the following information:
		Short but precise description of the bug (attach screenshots if needed);

		Symfony version used (because we support both 2.x and 3.x versions);

		EasyAdmin version (if it’s not the latest one).

If we cannot reproduce the bug with the information provided, we may ask you to
create a fork of the EasyAdmin Demo Application [https://github.com/javiereguiluz/easy-admin-demo] or the
Symfony Standard Edition [https://github.com/symfony/symfony-standard] reproducing the bug.

Sending Pull Requests

Making your changes

		Fork the EasyAdmin repository [https://github.com/javiereguiluz/EasyAdminBundle] on GitHub and clone it
in your computer:

$ git clone git://github.com/<YOUR GITHUB USERNAME>/EasyAdminBundle.git

		Create a new branch for the new code (if you are fixing a bug, you can call
this branch fix_NNN, where NNN is the number of the related issue):

$ git checkout -b fix_NNN

		Make your code changes (use the same code syntax as Symfony described in
PSR-2 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md]) and submit the changes. Make sure that your code is
compatible with PHP 5.3 and Symfony 2.3. Sometimes it’s tricky to develop
code compatible with Symfony 2.3 and 3.x. If you get stuck, just ask us and
we’ll help you.

Submitting your changes

		Commit and push your changes to your own fork:

optional: needed only if you have added new files
$ git add --all

$ git commit path/to/modified/files
alternative: "git commit -a" to commit all the modified files

if this doesn't work, try: "git push origin <branch_name>"
$ git push

		Go to the GitHub website and create a new pull request [https://github.com/javiereguiluz/EasyAdminBundle/pull/new] in the
EasyAdmin repository.

		Provide a short description about the changes made by the pull request.
If you are fixing a bug, add the text Fixed #NNN and provide the number of
the related issue (this allows us to track which bugs have already been fixed).

		There is no need to “squash” your commits. We’ll do that for you.

In case some changes are merged in the repository since you submitted your pull
request, we may ask you to rebase it to make it mergeable again:

$ git remote add upstream git@github.com:javiereguiluz/EasyAdminBundle.git
$ git pull --rebase upstream master
$ git push -f origin the_name_of_your_branch

Further information

		General GitHub documentation [https://help.github.com]

		GitHub pull request documentation [https://help.github.com/send-pull-requests]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

